Automatic Digital Garment Initialization from Sewing Patterns

Author:

Liu Chen12ORCID,Xu Weiwei1ORCID,Yang Yin34ORCID,Wang Huamin5ORCID

Affiliation:

1. State Key Lab of CAD and CG, Zhejiang University, Hangzhou, China

2. Style3D Research, Hangzhou, China

3. University of Utah, Salt Lake City, United States of America

4. Style3D Research, Salt Lake City, United States of America

5. Style3D Research, Galena, United States of America

Abstract

The rapid advancement of digital fashion and generative AI technology calls for an automated approach to transform digital sewing patterns into well-fitted garments on human avatars. When given a sewing pattern with its associated sewing relationships, the primary challenge is to establish an initial arrangement of sewing pieces that is free from folding and intersections. This setup enables a physics-based simulator to seamlessly stitch them into a digital garment, avoiding undesirable local minima. To achieve this, we harness AI classification, heuristics, and numerical optimization. This has led to the development of an innovative hybrid system that minimizes the need for user intervention in the initialization of garment pieces. The seeding process of our system involves the training of a classification network for selecting seed pieces, followed by solving an optimization problem to determine their positions and shapes. Subsequently, an iterative selection-arrangement procedure automates the selection of pattern pieces and employs a phased initialization approach to mitigate local minima associated with numerical optimization. Our experiments confirm the reliability, efficiency, and scalability of our system when handling intricate garments with multiple layers and numerous pieces. According to our findings, 68 percent of garments can be initialized with zero user intervention, while the remaining garments can be easily corrected through user operations.

Funder

National Science Foundation

Publisher

Association for Computing Machinery (ACM)

Reference54 articles.

1. Estimating Garment Patterns from Static Scan;Bang Seungbae;Data. Comput. Graph. Forum,2021

2. Large steps in cloth simulation

3. Untangling cloth

4. Physics-driven pattern adjustment for direct 3D garment editing

5. Miklos Bergou, Max Wardetzky, David Harmon, Denis Zorin, and Eitan Grinspun. 2006. A Quadratic Bending Model for Inextensible Surfaces. In Proceedings of SGP. 227--230.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3