Modular refinement of hierarchic reactive machines

Author:

Alur Rajeev1,Grosu Radu2

Affiliation:

1. University of Pennsylvania, Philadelphia, PA

2. State University of New York at Stony Brook, Stony Brook, NY

Abstract

Scalable formal analysis of reactive programs demands integration of modular reasoning techniques with existing analysis tools. Modular reasoning principles such as abstraction, compositional refinement, and assume-guarantee reasoning are well understood for architectural hierarchy that describes the communication structure between component processes, and have been shown to be useful. In this paper, we develop the theory of modular reasoning for behavior hierarchy that describes control structure using hierarchic modes. From Statecharts to UML, behavior hierarchy has been an integral component of many software design languages, but only syntactically. We present the hierarchic reactive modules language that retains powerful features such as nested modes, mode reuse, exceptions, group transitions, history, and conjunctive modes, and yet has a semantic notion of mode hierarchy. We present an observational trace semantics for modes that provides the basis for mode refinement. We show the refinement to be compositional with respect to the mode constructors, and develop an assume-guarantee reasoning principle.

Publisher

Association for Computing Machinery (ACM)

Subject

Software

Reference32 articles.

1. Conjoining specifications

2. Lecture Notes in Computer Science;Alur R.

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Formalizing UML State Machines for Automated Verification – A Survey;ACM Computing Surveys;2023-07-13

2. Instruction-Level Abstraction (ILA);ACM Transactions on Design Automation of Electronic Systems;2019-01-11

3. Formal architecture modeling of sequential non-recursive C programs;Science of Computer Programming;2017-10

4. A methodology to take credit for high-level verification during RTL verification;Formal Methods in System Design;2017-09-19

5. A True-Concurrency Encoding for BMC of Compositional Systems;The Computer Journal;2017-07-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3