Spamming botnets

Author:

Xie Yinglian1,Yu Fang1,Achan Kannan1,Panigrahy Rina1,Hulten Geoff2,Osipkov Ivan2

Affiliation:

1. Microsoft Research, Silicon Valley, Mountain View, CA, USA

2. Microsoft Corporation, Redmond, WA, USA

Abstract

In this paper, we focus on characterizing spamming botnets by leveraging both spam payload and spam server traffic properties. Towards this goal, we developed a spam signature generation framework called AutoRE to detect botnet-based spam emails and botnet membership. AutoRE does not require pre-classified training data or white lists. Moreover, it outputs high quality regular expression signatures that can detect botnet spam with a low false positive rate. Using a three-month sample of emails from Hotmail, AutoRE successfully identified 7,721 botnet-based spam campaigns together with 340,050 unique botnet host IP addresses. Our in-depth analysis of the identified botnets revealed several interesting findings regarding the degree of email obfuscation, properties of botnet IP addresses, sending patterns, and their correlation with network scanning traffic. We believe these observations are useful information in the design of botnet detection schemes.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3