Lattice problems in NP ∩ coNP

Author:

Aharonov Dorit1,Regev Oded2

Affiliation:

1. The Hebrew University, Jerusalem, Israel

2. Tel-Aviv University, Tel-Aviv, Israel

Abstract

We show that the problems of approximating the shortest and closest vector in a lattice to within a factor of √n lie in NP intersect coNP. The result (almost) subsumes the three mutually-incomparable previous results regarding these lattice problems: Banaszczyk [1993], Goldreich and Goldwasser [2000], and Aharonov and Regev [2003]. Our technique is based on a simple fact regarding succinct approximation of functions using their Fourier series over the lattice. This technique might be useful elsewhere---we demonstrate this by giving a simple and efficient algorithm for one other lattice problem (CVPP) improving on a previous result of Regev[2003]. An interesting fact is that our result emerged from a “dequantization” of our previous quantum result in Aharonov and Regev [2003]. This route to proving purely classical results might be beneficial elsewhere.

Publisher

Association for Computing Machinery (ACM)

Subject

Artificial Intelligence,Hardware and Architecture,Information Systems,Control and Systems Engineering,Software

Reference30 articles.

Cited by 90 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Constrained inhomogeneous spherical equations: average-case hardness;journal of Groups, complexity, cryptology;2024-07-09

2. Hardness of Range Avoidance and Remote Point for Restricted Circuits via Cryptography;Proceedings of the 56th Annual ACM Symposium on Theory of Computing;2024-06-10

3. Planted Clique Conjectures Are Equivalent;Proceedings of the 56th Annual ACM Symposium on Theory of Computing;2024-06-10

4. Adaptive Secure Homomorphic Encryption Scheme;2024 IEEE 2nd International Conference on Control, Electronics and Computer Technology (ICCECT);2024-04-26

5. Probabilistic Searching for MIMO Detection Based on Lattice Gaussian Distribution;IEEE Transactions on Communications;2024-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3