How to print floating-point numbers accurately

Author:

Steele Guy L.1,White Jon L.2

Affiliation:

1. Sun Microsystems Laboratories, Burlington, MA

2. Lisp Wizard, Oceanview, Kansas

Abstract

We present algorithms for accurately converting floating-point numbers to decimal representation. The key idea is to carry along with the computation an explicit representation of the required rounding accuracy.We begin with the simpler problem of converting fixed-point fractions. A modification of the well-known algorithm for radix-conversion of fixed-point fractions by multiplication explicitly determines when to terminate the conversion process; a variable number of digits are produced. The algorithm has these properties:• No information is lost; the original fraction can be recovered from the output by rounding.• No "garbage digits" are produced.• The output is correctly rounded.• It is never necessary to propagate carries on rounding.We then derive two algorithms for free-format out-put of floating-point numbers. The first simply scales the given floating-point number to an appropriate fractional range and then applies the algorithm for fractions. This is quite fast and simple to code but has inaccuracies stemming from round-off errors and oversimplification. The second algorithm guarantees mathematical accuracy by using multiple-precision integer arithmetic and handling special cases. Both algorithms produce no more digits than necessary (intuitively, the "1.3 prints as 1.2999999" problem does not occur).Finally, we modify the free-format conversion algorithm for use in fixed-format applications. Information may be lost if the fixed format provides too few digit positions, but the output is always correctly rounded. On the other hand, no "garbage digits" are ever produced, even if the fixed format specifies too many digit positions (intuitively, the "4/3 prints as 1.333333328366279602" problem does not occur).

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design,Software

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Floating-point arithmetic;Acta Numerica;2023-05

2. Fast number parsing without fallback;Software: Practice and Experience;2023-03-04

3. Number parsing at a gigabyte per second;Software: Practice and Experience;2021-05-11

4. Basic Properties and Algorithms;Handbook of Floating-Point Arithmetic;2018

5. An Array and List Processing System;Proceedings of ILC 2014 on 8th International Lisp Conference;2014-08-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3