Selecting and Composing Learning Rate Policies for Deep Neural Networks

Author:

Wu Yanzhao1ORCID,Liu Ling1ORCID

Affiliation:

1. Georgia Institute of Technology, Atlanta, Georgia, USA

Abstract

The choice of learning rate (LR) functions and policies has evolved from a simple fixed LR to the decaying LR and the cyclic LR, aiming to improve the accuracy and reduce the training time of Deep Neural Networks (DNNs). This article presents a systematic approach to selecting and composing an LR policy for effective DNN training to meet desired target accuracy and reduce training time within the pre-defined training iterations. It makes three original contributions. First, we develop an LR tuning mechanism for auto-verification of a given LR policy with respect to the desired accuracy goal under the pre-defined training time constraint. Second, we develop an LR policy recommendation system (LRBench) to select and compose good LR policies from the same and/or different LR functions through dynamic tuning, and avoid bad choices, for a given learning task, DNN model, and dataset. Third, we extend LRBench by supporting different DNN optimizers and show the significant mutual impact of different LR policies and different optimizers. Evaluated using popular benchmark datasets and different DNN models (LeNet, CNN3, ResNet), we show that our approach can effectively deliver high DNN test accuracy, outperform the existing recommended default LR policies, and reduce the DNN training time by 1.6-6.7× to meet a targeted model accuracy.

Funder

National Science Foundation

IBM faculty award

Publisher

Association for Computing Machinery (ACM)

Subject

Artificial Intelligence,Theoretical Computer Science

Reference45 articles.

1. Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama. 2019. Optuna: A next-generation hyperparameter optimization framework. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (KDD’19). ACM, New York, NY, 2623–2631.

2. Luís B. Almeida, Thibault Langlois, José D. Amaral, and Alexander Plakhov. 1999. Parameter Adaptation in Stochastic Optimization. Cambridge University Press, 111–134.

3. Atilim Gunes Baydin, Robert Cornish, David Martinez Rubio, Mark Schmidt, and Frank Wood. 2018. Online learning rate adaptation with hypergradient descent. In International Conference on Learning Representations. https://openreview.net/forum?id=BkrsAzWAb.

4. Yoshua Bengio. 2012. Practical Recommendations for Gradient-Based Training of Deep Architectures. Springer, Berlin, 437–478.

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3