System level design paradigms

Author:

Pinto Alessandro1,Bonivento Alvise1,Sangiovanni-Vincentelli Allberto L.1,Passerone Roberto2,Sgroi Marco3

Affiliation:

1. University of California, Berkeley, Berkeley, CA

2. University of Trento, Trento, Italy

3. DoCoMo Euro-Labs, Munich, Germany

Abstract

Embedded system level design must be based on paradigms that make formal foundations and unification a cornerstone of their construction. Platform-Based designs and communication synthesis are important components of the paradigm shift we advocate.Communication synthesis is a fundamental productivity tool in a design methodology where reuse is enforced. Communication design in a reuse methodology starts with a set of functional requirements and constraints on the interaction among components and then proceeds to build protocols, topology, and physical implementations that satisfy requirements and constraints while optimizing appropriate measures of efficiency of the implementation. Maximum efficiency can be reached when the communication specifications are entered at high levels of abstraction and the design process optimizes the implementation from this specification. Unfortunately, this process is very difficult if it is not cast in a rigorous framework. Platform-Based design helps define a successive refinement process where each step can be carried out automatically and optimized appropriately. We present two cases, an on-chip and a wireless sensor network design, where the resulting methodology gave encouraging results.

Publisher

Association for Computing Machinery (ACM)

Subject

Electrical and Electronic Engineering,Computer Graphics and Computer-Aided Design,Computer Science Applications

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3