Wavelet synopses for general error metrics

Author:

Garofalakis Minos1,Kumar Amit2

Affiliation:

1. Intel Research Berkeley, Berkeley, CA

2. Indian Institute of Technology, New Delhi, India

Abstract

Several studies have demonstrated the effectiveness of the wavelet decomposition as a tool for reducing large amounts of data down to compact wavelet synopses that can be used to obtain fast, accurate approximate query answers. Conventional wavelet synopses that greedily minimize the overall root-mean-squared (i.e., L 2 -norm) error in the data approximation can suffer from important problems, including severe bias and wide variance in the quality of the data reconstruction, and lack of nontrivial guarantees for individual approximate answers. Thus, probabilistic thresholding schemes have been recently proposed as a means of building wavelet synopses that try to probabilistically control maximum approximation-error metrics (e.g., maximum relative error).A key open problem is whether it is possible to design efficient deterministic wavelet-thresholding algorithms for minimizing general, non-L 2 error metrics that are relevant to approximate query processing systems, such as maximum relative or maximum absolute error. Obviously, such algorithms can guarantee better maximum-error wavelet synopses and avoid the pitfalls of probabilistic techniques (e.g., “bad” coin-flip sequences) leading to poor solutions; in addition, they can be used to directly optimize the synopsis construction process for other useful error metrics, such as the mean relative error in data-value reconstruction. In this article, we propose novel, computationally efficient schemes for deterministic wavelet thresholding with the objective of optimizing general approximation-error metrics . We first consider the problem of constructing wavelet synopses optimized for maximum error , and introduce an optimal low polynomial-time algorithm for one-dimensional wavelet thresholding---our algorithm is based on a new Dynamic-Programming (DP) formulation, and can be employed to minimize the maximum relative or absolute error in the data reconstruction. Unfortunately, directly extending our one-dimensional DP algorithm to multidimensional wavelets results in a super-exponential increase in time complexity with the data dimensionality. Thus, we also introduce novel, polynomial-time approximation schemes (with tunable approximation guarantees) for deterministic wavelet thresholding in multiple dimensions. We then demonstrate how our optimal and approximate thresholding algorithms for maximum error can be extended to handle a broad, natural class of distributive error metrics , which includes several important error measures, such as mean weighted relative error and weighted L p -norm error. Experimental results on real-world and synthetic data sets evaluate our novel optimization algorithms, and demonstrate their effectiveness against earlier wavelet-thresholding schemes.

Publisher

Association for Computing Machinery (ACM)

Subject

Information Systems

Reference27 articles.

1. Join synopses for approximate query answering

2. Improving responsiveness for wide-area data access;Amsaleg L.;IEEE Data Eng. Bull.,1997

3. Indexing spatio-temporal trajectories with Chebyshev polynomials

Cited by 49 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3