Integrated CPU and l2 cache voltage scaling using machine learning

Author:

AbouGhazaleh Nevine1,Ferreira Alexandre1,Rusu Cosmin1,Xu Ruibin1,Liberato Frank1,Childers Bruce1,Mosse Daniel1,Melhem Rami1

Affiliation:

1. University of Pittsburgh, Pittsburgh, PA

Abstract

Embedded systems serve an emerging and diverse set of applications. As a result, more computational and storage capabilities are added to accommodate ever more demanding applications. Unfortunately, adding more resources typically comes on the expense of higher energy costs. New chip design with Multiple Clock Domains (MCD) opens the opportunity for fine-grain power management within theprocessor chip. When used with dynamic voltage scaling (DVS), we can control the voltage and power of each domain independently. A significant power and energy improvement has been shown when using MCD design in comparison to managing a single voltage domain for the whole chip, as in traditional chips with global DVS. In this paper, we propose PACSL a Power-Aware Compiler-based approach using Supervised Learning. PACSL automatically derives an integrated CPU-core and on-chip L2 cache DVS policy tailored to a specific system and workload. Our approach uses supervised machine learning to discover a policy, which relies on monitoring a few performance counters. We present our approach detailing the role of a compiler in constructing a custom power management policy. We also discuss some implementation issues associated with our technique. We show that PACSL improves on traditional power management techniques that are used in general MCD chips. Our technique saves 22% on average (up to 46%) in energy-delay product over a DVS technique that applies independent DVS decisions in each domain. Compared to no-power management, our technique improves energy-delay product by 26% on average (up to 64%).

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design,Software

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Survey of Machine Learning for Computer Architecture and Systems;ACM Computing Surveys;2022-02-03

2. Multicopy Cache;ACM Transactions on Embedded Computing Systems;2014-12-15

3. Virtual Batching: Request Batching for Server Energy Conservation in Virtualized Data Centers;IEEE Transactions on Parallel and Distributed Systems;2013-08

4. Adaptive energy-management features of the IBM POWER7 chip;IBM Journal of Research and Development;2011-05

5. Integrated CPU Cache Power Management in Multiple Clock Domain Processors;High Performance Embedded Architectures and Compilers

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3