Realistic Cost to Execute Practical Quantum Circuits using Direct Clifford+T Lattice Surgery Compilation

Author:

LeBlond Tyler1ORCID,Dean Christopher2ORCID,Watkins George3ORCID,Bennink Ryan1ORCID

Affiliation:

1. Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, United States

2. Department of Mathematics and Statistics, Dalhousie University, Halifax, Canada

3. Department of Computer Science, Aalto-universitetet, Aalto, Finland

Abstract

We report a resource estimation pipeline that explicitly compiles quantum circuits expressed using the Clifford+T gate set into a surface code lattice surgery instruction set. The cadence of magic state requests from the compiled circuit enables the optimization of magic state distillation and storage requirements in a post-hoc analysis. To compile logical circuits into lattice surgery operations, we build upon the open-source Lattice Surgery Compiler. The revised compiler operates in two stages: the first translates logical gates into an abstract, layout-independent instruction set; the second compiles these into local lattice surgery instructions that are allocated to hardware tiles according to a specified resource layout. The second stage retains logical parallelism while avoiding resource contention in the fault-tolerant layer, aiding realism. Additionally, users can specify dedicated tiles at which magic states are replenished, enabling resource costs from the logical computation to be considered independently from magic state distillation and storage. We demonstrate the applicability of our pipeline to large, practical quantum circuits by providing resource estimates for the ground state estimation of molecules. We find that variable magic state consumption rates in real circuits can cause the resource costs of magic state storage to dominate unless production is varied to suit.

Publisher

Association for Computing Machinery (ACM)

Reference44 articles.

1. 2023. Suppressing quantum errors by scaling a surface code logical qubit. Nature 614, 7949 (2023), 676–681.

2. Mohamed H. Abobeih, Yu Wang, John Randall, S. J. H. Loenen, Christina E. Bradley, Matthew Markham, Daniel J. Twitchen, Barbara M. Terhal, and Tim H. Taminiau. 2022. Fault-tolerant operation of a logical qubit in a diamond quantum processor. Nature 606, 7916 (2022), 884–889.

3. High Fidelity State Preparation and Measurement of Ion Hyperfine Qubits with I>12

4. Surface Code Compilation via Edge-Disjoint Paths

5. Michael E Beverland Prakash Murali Matthias Troyer Krysta M Svore Torsten Hoefler Vadym Kliuchnikov Guang Hao Low Mathias Soeken Aarthi Sundaram and Alexander Vaschillo. 2022. Assessing requirements to scale to practical quantum advantage. arXiv preprint arXiv:2211.07629(2022).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3