Prediction of Who Will Be the Next Speaker and When Using Gaze Behavior in Multiparty Meetings

Author:

Ishii Ryo1,Otsuka Kazuhiro1,Kumano Shiro1,Yamato Junji1

Affiliation:

1. NTT Corporation

Abstract

In multiparty meetings, participants need to predict the end of the speaker’s utterance and who will start speaking next, as well as consider a strategy for good timing to speak next. Gaze behavior plays an important role in smooth turn-changing. This article proposes a prediction model that features three processing steps to predict (I) whether turn-changing or turn-keeping will occur, (II) who will be the next speaker in turn-changing, and (III) the timing of the start of the next speaker’s utterance. For the feature values of the model, we focused on gaze transition patterns and the timing structure of eye contact between a speaker and a listener near the end of the speaker’s utterance. Gaze transition patterns provide information about the order in which gaze behavior changes. The timing structure of eye contact is defined as who looks at whom and who looks away first, the speaker or listener, when eye contact between the speaker and a listener occurs. We collected corpus data of multiparty meetings, using the data to demonstrate relationships between gaze transition patterns and timing structure and situations (I), (II), and (III). The results of our analyses indicate that the gaze transition pattern of the speaker and listener and the timing structure of eye contact have a strong association with turn-changing, the next speaker in turn-changing, and the start time of the next utterance. On the basis of the results, we constructed prediction models using the gaze transition patterns and timing structure. The gaze transition patterns were found to be useful in predicting turn-changing, the next speaker in turn-changing, and the start time of the next utterance. Contrary to expectations, we did not find that the timing structure is useful for predicting the next speaker and the start time. This study opens up new possibilities for predicting the next speaker and the timing of the next utterance using gaze transition patterns in multiparty meetings.

Publisher

Association for Computing Machinery (ACM)

Subject

Artificial Intelligence,Human-Computer Interaction

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Good Looking: How Gaze Patterns affect Users’ Perceptions of an Interactive Social Robot;2024 IEEE International Conference on Advanced Robotics and Its Social Impacts (ARSO);2024-05-20

2. 3M-Transformer: A Multi-Stage Multi-Stream Multimodal Transformer for Embodied Turn-Taking Prediction;ICASSP 2024 - 2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP);2024-04-14

3. Sensing the Intentions to Speak in VR Group Discussions;Sensors;2024-01-07

4. Quantitative Observation to Explore the Turn-Changing Mechanisms of Conversations in Remote Meetings Accompanying Supplemental Materials;Lecture Notes in Computer Science;2024

5. Video-based Respiratory Waveform Estimation in Dialogue: A Novel Task and Dataset for Human-Machine Interaction;INTERNATIONAL CONFERENCE ON MULTIMODAL INTERACTION;2023-10-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3