Higher-Order Property-Directed Reachability

Author:

Katsura Hiroyuki1ORCID,Kobayashi Naoki1ORCID,Sato Ryosuke1ORCID

Affiliation:

1. University of Tokyo, Japan

Abstract

The property-directed reachability (PDR) has been used as a successful method for automated verification of first-order transition systems. We propose a higher-order extension of PDR, called HoPDR, where higher-order recursive functions may be used to describe transition systems. We formalize HoPDR for the validity checking problem for conjunctive nu-HFL(Z), a higher-order fixpoint logic with integers and greatest fixpoint operators. The validity checking problem can also be viewed as a higher-order extension of the satisfiability problem for Constrained Horn Clauses (CHC), and safety property verification of higher-order programs can naturally be reduced to the validity checking problem. We have implemented a prototype verification tool based on HoPDR and confirmed its effectiveness. We also compare our HoPDR procedure with the PDR procedure for first-order systems and previous methods for fully automated higher-order program verification.

Funder

Japan Science and Technology Agency

Japan Society for the Promotion of Science

Publisher

Association for Computing Machinery (ACM)

Subject

Safety, Risk, Reliability and Quality,Software

Reference39 articles.

1. On Higher-Order Reachability Games Vs May Reachability

2. PrIC3: Property Directed Reachability for MDPs

3. Nikolaj Bjørner, Arie Gurfinkel, Kenneth L. McMillan, and Andrey Rybalchenko. 2015. Horn Clause Solvers for Program Verification. In Fields of Logic and Computation II - Essays Dedicated to Yuri Gurevich on the Occasion of His 75th Birthday (LNCS, Vol. 9300). Springer, 24–51.

4. SAT-Based Model Checking without Unrolling

5. Higher-order constrained horn clauses for verification

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Higher-Order Property-Directed Reachability;Proceedings of the ACM on Programming Languages;2023-08-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3