Abstract
Three-dimensional integration enables stacking memory directly on top of a microprocessor, thereby significantly reducing wire delay between the two. Previous studies have examined the performance benefits of such an approach, but all of these works only consider commodity 2D DRAM organizations. In this work, we explore more aggressive 3D DRAM organizations that make better use of the additional die-to-die bandwidth provided by 3D stacking, as well as the additional transistor count. Our simulation results show that with a few simple changes to the 3D-DRAM organization, we can achieve a 1.75x speedup over previously proposed 3D-DRAM approaches on our memory-intensive multi-programmed workloads on a quad-core processor. The significant increase in memory system performance makes the L2 miss handling architecture (MHA) a new bottleneck, which we address by combining a novel data structure called the Vector Bloom Filter with dynamic MSHR capacity tuning. Our scalable L2 MHA yields an additional 17.8% performance improvement over our 3D-stacked memory architecture.
Publisher
Association for Computing Machinery (ACM)
Cited by
58 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献