Clock Period Minimization with Minimum Leakage Power

Author:

Huang Shih-Hsu1,Yeh Hua-Hsin1,Nieh Yow-Tyng2

Affiliation:

1. Chung Yuan Christian University, Taiwan, R.O.C

2. Industrial Technology Research Institute, Taiwan, R.O.C

Abstract

In the design of nonzero clock skew circuits, an increase of the short-path delay may improve circuit speed or reduce leakage power. However, the impact of increasing the short-path delay on the trade-off between circuit speed and leakage power has not been well studied. An analysis of previous works shows that they can be classified into two independent groups. One group uses extra buffers to increase the short-path delay for achieving the lower bound of the clock period; however, this group has a large overhead of leakage power. The other group uses the combination of threshold voltage assignment and gate sizing (TVA/GS) to increase the short-path delay as possible for reducing leakage power; however, this group often does not work with the lower bound of the clock period. Accordingly, this article considers the simultaneous application of buffer insertion and TVA/GS during clock skew scheduling. Our objective is to minimize the leakage power for working with the lower bound of the clock period. To the best of our knowledge, our approach is the first leakage-power-aware clock skew scheduling that guarantees working with the lower bound of the clock period. Benchmark data consistently show that our approach achieves good results in terms of both the circuit speed and the leakage power.

Funder

Ministry of Science and Technology of Taiwan, R.O.C

Publisher

Association for Computing Machinery (ACM)

Subject

Electrical and Electronic Engineering,Computer Graphics and Computer-Aided Design,Computer Science Applications

Reference23 articles.

1. Clock skew optimization

2. Minimum inserted buffers for clock period minimization;Huang S. H.;J. Inf. Sci. Engin.,2011

3. Synthesis of nonzero clock skew circuits

4. Revisiting the linear programming framework for leakage power vs. performance optimization

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3