Parallel unsymmetric-pattern multifrontal sparse LU with column preordering

Author:

Avron Haim1,Shklarski Gil1,Toledo Sivan1

Affiliation:

1. Tel-Aviv University, Israel

Abstract

We present a new parallel sparse LU factorization algorithm and code. The algorithm uses a column-preordering partial-pivoting unsymmetric-pattern multifrontal approach. Our baseline sequential algorithm is based on UMFPACK 4, but is somewhat simpler and is often somewhat faster than UMFPACK version 4.0. Our parallel algorithm is designed for shared-memory machines with a small or moderate number of processors (we tested it on up to 32 processors). We experimentally compare our algorithm with SuperLU_MT, an existing shared-memory sparse LU factorization with partial pivoting. SuperLU_MT scales better than our new algorithm, but our algorithm is more reliable and is usually faster. More specifically, on matrices that are costly to factor, our algorithm is usually faster on up to 4 processors, and is usually faster on 8 and 16. We were not able to run SuperLU_MT on 32. The main contribution of this article is showing that the column-preordering partial-pivoting unsymmetric-pattern multifrontal approach, developed as a sequential algorithm by Davis in several recent versions of UMFPACK, can be effectively parallelized.

Funder

Israel Science Foundation

International Business Machines Corporation

Publisher

Association for Computing Machinery (ACM)

Subject

Applied Mathematics,Software

Reference36 articles.

1. An Unsymmetrized Multifrontal LU Factorization

2. Anderson E. Bai Z. Bischof C. Demmel J. Dongarra J. Croz J. D. Greenbaum A. Hammarling S. McKenney A. Ostrouchov S. and Sorensen D. 1994. LAPACK User's Guide 2nd ed. SIAM Philadelphia PA. Also available online from http://www.netlib.org. Anderson E. Bai Z. Bischof C. Demmel J. Dongarra J. Croz J. D. Greenbaum A. Hammarling S. McKenney A. Ostrouchov S. and Sorensen D. 1994. LAPACK User's Guide 2nd ed. SIAM Philadelphia PA. Also available online from http://www.netlib.org.

3. The influence of relaxed supernode partitions on the multifrontal method

4. Nested-Dissection Orderings for Sparse LU with Partial Pivoting

5. A column pre-ordering strategy for the unsymmetric-pattern multifrontal method

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3