Diverse Motion Stylization for Multiple Style Domains via Spatial-Temporal Graph-Based Generative Model

Author:

Park Soomin1,Jang Deok-Kyeong1,Lee Sung-Hee1

Affiliation:

1. KAIST, Daejeon, Korea

Abstract

This paper presents a novel deep learning-based framework for translating a motion into various styles within multiple domains. Our framework is a single set of generative adversarial networks that learns stylistic features from a collection of unpaired motion clips with style labels to support mapping between multiple style domains. We construct a spatio-temporal graph to model a motion sequence and employ the spatial-temporal graph convolution networks (ST-GCN) to extract stylistic properties along spatial and temporal dimensions. Through spatial-temporal modeling, our framework shows improved style translation results between significantly different actions and on a long motion sequence containing multiple actions. In addition, we first develop a mapping network for motion stylization that maps a random noise to style, which allows for generating diverse stylization results without using reference motions. Through various experiments, we demonstrate the ability of our method to generate improved results in terms of visual quality, stylistic diversity, and content preservation.

Funder

National Research Foundation, Korea

KEIT, Korea

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Denoising Diffusion Probabilistic Models for Action-Conditioned 3D Motion Generation;ICASSP 2024 - 2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP);2024-04-14

2. Spatially-Adaptive Instance Normalization for Generation of More Style-Recognizable Motions;2024 IEEE 7th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC);2024-03-15

3. Contrastive disentanglement for self-supervised motion style transfer;Multimedia Tools and Applications;2024-01-30

4. MOCHA: Real-Time Motion Characterization via Context Matching;SIGGRAPH Asia 2023 Conference Papers;2023-12-10

5. An Implicit Physical Face Model Driven by Expression and Style;SIGGRAPH Asia 2023 Conference Papers;2023-12-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3