Scrambled Linear Pseudorandom Number Generators

Author:

Blackman David1,Vigna Sebastiano2ORCID

Affiliation:

1. Independent researcher Australia, Australia

2. Università degli Studi di Milano, Milano MI, Italy

Abstract

F 2 -linear pseudorandom number generators are very popular due to their high speed, to the ease with which generators with a sizable state space can be created, and to their provable theoretical properties. However, they suffer from linear artifacts that show as failures in linearity-related statistical tests such as the binary-rank and the linear-complexity test. In this article, we give two new contributions. First, we introduce two new F 2 -linear transformations that have been handcrafted to have good statistical properties and at the same time to be programmable very efficiently on superscalar processors, or even directly in hardware. Then, we describe some scramblers , that is, nonlinear functions applied to the state array that reduce or delete the linear artifacts, and propose combinations of linear transformations and scramblers that give extremely fast pseudorandom number generators of high quality. A novelty in our approach is that we use ideas from the theory of filtered linear-feedback shift registers to prove some properties of our scramblers, rather than relying purely on heuristics. In the end, we provide simple, extremely fast generators that use a few hundred bits of memory, have provable properties, and pass strong statistical tests.

Funder

Google Focused Research Award

Publisher

Association for Computing Machinery (ACM)

Subject

Applied Mathematics,Software

Reference39 articles.

1. David Blackman and Sebastiano Vigna. 2020. A new test for Hamming-weight dependencies. David Blackman and Sebastiano Vigna. 2020. A new test for Hamming-weight dependencies.

2. Noncommutative determinants, Cauchy–Binet formulae, and Capelli-type identities I. Generalizations of the Capelli and Turnbull identities

3. Algebraic properties of Manin matrices 1

Cited by 45 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3