Affiliation:
1. National Taiwan University, Taiwan
2. University of California, Davis, USA
3. Harvard University, USA
4. University of Texas at Austin, USA
Abstract
Understanding the algorithmic behaviors that are
in principle
realizable in a chemical system is necessary for a rigorous understanding of the design principles of biological regulatory networks. Further, advances in synthetic biology herald the time when we will be able to rationally engineer complex chemical systems and when idealized formal models will become blueprints for engineering.
Coupled chemical interactions in a well-mixed solution are commonly formalized as chemical reaction networks (CRNs). However, despite the widespread use of CRNs in the natural sciences, the range of computational behaviors exhibited by CRNs is not well understood. Here, we study the following problem: What functions
f : ℝ
k
→ ℝ
can be computed by a CRN, in which the CRN eventually produces the correct amount of the “output” molecule, no matter the rate at which reactions proceed? This captures a previously unexplored but very natural class of computations: For example, the reaction
X
1
+ X
2
→ Y
can be thought to compute the function
y
= min (
x
1
, x
2
). Such a CRN is robust in the sense that it is correct whether its evolution is governed by the standard model of mass-action kinetics, alternatives such as Hill-function or Michaelis-Menten kinetics, or other arbitrary models of chemistry that respect the (fundamentally digital) stoichiometric constraints (what are the reactants and products?).
We develop a reachability relation based on a broad notion of “what could happen” if reaction rates can vary arbitrarily over time. Using reachability, we define
stable computation
analogously to probability 1 computation in distributed computing and connect it with a seemingly stronger notion of rate-independent computation based on convergence in the limit
t
→ ∞ under a wide class of generalized rate laws. Besides the direct mapping of a concentration to a nonnegative analog value, we also consider the “dual-rail representation” that can represent negative values as the difference of two concentrations and allows the composition of CRN modules. We prove that a function is rate-independently computable if and only if it is piecewise linear (with rational coefficients) and continuous (dual-rail representation), or non-negative with discontinuities occurring only when some inputs switch from zero to positive (direct representation). The many contexts where continuous piecewise linear functions are powerful targets for implementation, combined with the systematic construction we develop for computing these functions, demonstrate the potential of rate-independent chemical computation.
Funder
NSF
Sloan Foundation Research Fellowship
National Science Foundation Graduate Research Fellowship
MOST
Publisher
Association for Computing Machinery (ACM)
Subject
Artificial Intelligence,Hardware and Architecture,Information Systems,Control and Systems Engineering,Software
Reference53 articles.
1. Dan Alistarh, James Aspnes, David Eisenstat, Rati Gelashvili, and Ronald L. Rivest. 2017. Time-space trade-offs in population protocols. In 28th Annual ACM-SIAM Symposium on Discrete Algorithms. SIAM, 2560–2579.
2. Dan Alistarh, James Aspnes, and Rati Gelashvili. 2018. Space-optimal majority in population protocols. In 29th Annual ACM-SIAM Symposium on Discrete Algorithms. 2221–2239.
3. Recent Algorithmic Advances in Population Protocols
4. On the structural monotonicity of chemical reaction networks
5. A Petri net approach to the study of persistence in chemical reaction networks
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献