Asymptotic Optimal Control of Markov-Modulated Restless Bandits

Author:

Duran Santiago1,Verloop Ina Maria2

Affiliation:

1. CNRS, LAAS & Universite de Toulouse, Toulouse, France

2. CNRS, IRIT & Universite de Toulouse, Toulouse, France

Abstract

This paper studies optimal control subject to changing conditions. This is an area that recently received a lot of attention as it arises in numerous situations in practice. Some applications being cloud computing systems where the arrival rates of new jobs fluctuate over time, or the time-varying capacity as encountered in power-aware systems or wireless downlink channels. To study this, we focus on a restless bandit model, which has proved to be a powerful stochastic optimization framework to model scheduling of activities. In particular, it has been extensively applied in the context of optimal control of computing systems. This paper is a first step to its optimal control when restless bandits are subject to changing conditions, the latter being modeled by Markov-modulated environments. We consider the restless bandit problem in an asymptotic regime, which is obtained by letting the population of bandits grow large, and letting the environment change relatively fast. We present sufficient conditions for a policy to be asymptotically optimal and show that a set of priority policies satisfies these. Under an indexability assumption, an averaged version of Whittle's index policy is proved to be inside this set of asymptotic optimal policies. The performance of the averaged Whittle's index policy is numerically evaluated for a multi-class scheduling problem in a wireless downlink subject to changing conditions. While keeping the number of bandits constant, we observe that the average Whittle index policy becomes close to optimal as the speed of the modulated environment increases.

Funder

Agence Nationale de la Recherche (ANR) France

Publisher

Association for Computing Machinery (ACM)

Subject

General Medicine

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Exponential asymptotic optimality of Whittle index policy;Queueing Systems;2023-05-21

2. On the Whittle index of Markov modulated restless bandits;Queueing Systems;2022-06-27

3. Asymptotically Optimal Lagrangian Priority Policy for Deadline Scheduling With Processing Rate Limits;IEEE Transactions on Automatic Control;2022-01

4. Asymptotic Optimal Control of Markov-Modulated Restless Bandits;ACM SIGMETRICS Performance Evaluation Review;2019-01-17

5. Asymptotic Optimal Control of Markov-Modulated Restless Bandits;Abstracts of the 2018 ACM International Conference on Measurement and Modeling of Computer Systems;2018-06-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3