An Implicit Characterization of PSPACE

Author:

Gaboardi Marco1,Marion Jean-Yves2,Ronchi Della Rocca Simona3

Affiliation:

1. Università degli Studi di Bologna

2. Université de Lorraine

3. Università degli Studi di Torino

Abstract

We present a type system for an extension of lambda calculus with a conditional construction, named STA B , that characterizes the PSPACE class. This system is obtained by extending STA, a type assignment for lambda-calculus inspired by Lafont’s Soft Linear Logic and characterizing the PTIME class. We extend STA by means of a ground type and terms for Booleans and conditional. The key issue in the design of the type system is to manage the contexts in the rule for conditional in an additive way. Thanks to this rule, we are able to program polynomial time Alternating Turing Machines. From the well-known result APTIME = PSPACE, it follows that STA B is complete for PSPACE. Conversely, inspired by the simulation of Alternating Turing machines by means of Deterministic Turing machine, we introduce a call-by-name evaluation machine with two memory devices in order to evaluate programs in polynomial space. As far as we know, this is the first characterization of PSPACE that is based on lambda calculus and light logics.

Publisher

Association for Computing Machinery (ACM)

Subject

Computational Mathematics,Logic,General Computer Science,Theoretical Computer Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Reasonable Space for the λ-Calculus, Logarithmically;Proceedings of the 37th Annual ACM/IEEE Symposium on Logic in Computer Science;2022-08-02

2. Implicit computation complexity in higher-order programming languages;Mathematical Structures in Computer Science;2022-03-15

3. Polynomial time in untyped elementary linear logic;Theoretical Computer Science;2020-04

4. Unary Resolution: Characterizing Ptime;Lecture Notes in Computer Science;2016

5. Computational Complexity Via Finite Types;ACM Transactions on Computational Logic;2015-07-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3