1. Martín Abadi , Paul Barham , Jianmin Chen , Zhifeng Chen , Andy Davis , Jeffrey Dean , Matthieu Devin , Sanjay Ghemawat , Geoffrey Irving , Michael Isard , Manjunath Kudlur , Josh Levenberg , Rajat Monga , Sherry Moore , Derek G. Murray , Benoit Steiner , Paul Tucker , Vijay Vasudevan , Pete Warden , Martin Wicke , Yuan Yu , and Xiaoqiang Zheng . 2016 . TensorFlow: A System for Large-Scale Machine Learning. In 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 16) . USENIX Association, Savannah, GA, 265--283. https://www.usenix.org/conference/osdi16/technical-sessions/presentation/abadi Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, Manjunath Kudlur, Josh Levenberg, Rajat Monga, Sherry Moore, Derek G. Murray, Benoit Steiner, Paul Tucker, Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. 2016. TensorFlow: A System for Large-Scale Machine Learning. In 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 16). USENIX Association, Savannah, GA, 265--283. https://www.usenix.org/conference/osdi16/technical-sessions/presentation/abadi
2. Jeffrey Dean , Greg S. Corrado , Rajat Monga , Kai Chen , Matthieu Devin , Quoc V. Le , Mark Z. Mao , Marc'Aurelio Ranzato , Andrew Senior , Paul Tucker , Ke Yang , and Andrew Y . Ng . 2012 . Large Scale Distributed Deep Networks. In NIPS. Jeffrey Dean, Greg S. Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Quoc V. Le, Mark Z. Mao, Marc'Aurelio Ranzato, Andrew Senior, Paul Tucker, Ke Yang, and Andrew Y. Ng. 2012. Large Scale Distributed Deep Networks. In NIPS.
3. Fast Approximate Score Computation on Large-Scale Distributed Data for Learning Multinomial Bayesian Networks
4. Thomas P. Minka. 2013. Expectation Propagation for approximate Bayesian inference. arXiv:1301.2294 [cs.AI] Thomas P. Minka. 2013. Expectation Propagation for approximate Bayesian inference. arXiv:1301.2294 [cs.AI]
5. Microsoft Research. 2019. EconML: A Python Package for ML-Based Heterogeneous Treatment Effects Estimation. https://github.com/microsoft/EconML. Version 0.x. Microsoft Research. 2019. EconML: A Python Package for ML-Based Heterogeneous Treatment Effects Estimation. https://github.com/microsoft/EconML. Version 0.x.