Abstracting extensible data types: or, rows by any other name

Author:

Morris J. Garrett1,McKinna James2

Affiliation:

1. University of Kansas, USA

2. University of Edinburgh, UK

Abstract

We present a novel typed language for extensible data types, generalizing and abstracting existing systems of row types and row polymorphism. Extensible data types are a powerful addition to traditional functional programming languages, capturing ideas from OOP-like record extension and polymorphism to modular compositional interpreters. We introduce row theories, a monoidal generalization of row types, giving a general account of record concatenation and projection (dually, variant injection and branching). We realize them via qualified types, abstracting the interpretation of records and variants over different row theories. Our approach naturally types terms untypable in other systems of extensible data types, while maintaining strong metatheoretic properties, such as coherence and principal types. Evidence for type qualifiers has computational content, determining the implementation of record and variant operations; we demonstrate this in giving a modular translation from our calculus, instantiated with various row theories, to polymorphic λ-calculus.

Funder

AFOSR

Publisher

Association for Computing Machinery (ACM)

Subject

Safety, Risk, Reliability and Quality,Software

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Abstracting Effect Systems for Algebraic Effect Handlers;Proceedings of the ACM on Programming Languages;2024-08-15

2. Soundly Handling Linearity;Proceedings of the ACM on Programming Languages;2024-01-05

3. The Hrewrite Library: A Term Rewriting Engine for Automatic Code Assembly;Lecture Notes in Computer Science;2024

4. Polymorphic Typestate for Session Types;International Symposium on Principles and Practice of Declarative Programming;2023-10-22

5. Structural Subtyping as Parametric Polymorphism;Proceedings of the ACM on Programming Languages;2023-10-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3