Low complexity, stable scheduling algorithms for networks of input queued switches with no or very low speed-up

Author:

Bauer Claus1

Affiliation:

1. Dolby Laboratories, San Francisco, CA

Abstract

The delay and throughput characteristics of a packet switch depend mainly on the queueing scheme and the scheduling algorithm deployed at the switch. Early research on scheduling algorithms has mainly focused on maximum weight matching scheduling algorithms. It is known that maximum weight matching algorithms guarantee the stability of input-queued switches, but are impractical due to their high computational complexity. Later research showed that the less complex maximal matching algorithms can stabilize input-queued switches when they are deployed with a speed-up of two. For practical purposes, neither a high computational complexity nor a speed-up of two is desirable.In this paper, we investigate the application of matching algorithms that approximate maximum weight matching algorithms to scheduling problems. We show that while having a low computational complexity, they guarantee the stability of input queued switches when they are deployed with a moderate speed-up.In particular, we show that the improve_matching algorithm stabilizes input-queued switches when it is deployed with a speed-up of 3<over>2+ε.In a second step, we further improve on these results by proposing a class of maximal weight matching algorithms that stabilize an input-queued switch without any speed-up.Whereas initial research has only focused on scheduling algorithms that guarantee the stability of a single switch, recent work has shown how scheduling algorithms for single switches can be modified in order to design distributed scheduling algorithms that stabilize networks of input-queued switches. Using those results, we show that the switching algorithms proposed in this paper do not only stabilize a single switch, but also networks of input-queued switches.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3