Affiliation:
1. GESIS - Leibniz Institute for the Social Sciences and University of Koblenz-Landau, Koblenz, Germany
2. Technical University of Graz, Graz, Austria
3. University of Würzburg, Würzburg, Germany
Abstract
When users interact with the Web today, they leave sequential digital trails on a massive scale. Examples of such human trails include Web navigation, sequences of online restaurant reviews, or online music play lists. Understanding the factors that drive the production of these trails can be useful, for example, for improving underlying network structures, predicting user clicks, or enhancing recommendations. In this work, we present a method called
HypTrails
for comparing a set of hypotheses about human trails on the Web, where hypotheses represent beliefs about transitions between states. Our method utilizes Markov chain models with Bayesian inference. The main idea is to incorporate hypotheses as informative Dirichlet priors and to calculate the evidence of the data under them. For eliciting Dirichlet priors from hypotheses, we present an adaption of the so-called (trial) roulette method, and to compare the relative plausibility of hypotheses, we employ Bayes factors. We demonstrate the general mechanics and applicability of HypTrails by performing experiments with (i) synthetic trails for which we control the mechanisms that have produced them and (ii) empirical trails stemming from different domains including Web site navigation, business reviews, and online music played. Our work expands the repertoire of methods available for studying human trails.
Funder
FWF Austrian Science Fund research project “Navigability of Decentralized Information Networks.”
DFG German Science Fund research project “PoSTs II”
Publisher
Association for Computing Machinery (ACM)
Subject
Computer Networks and Communications
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献