Enhanced Enumeration Techniques for Syntax-Guided Synthesis of Bit-Vector Manipulations

Author:

Ding Yuantian1ORCID,Qiu Xiaokang1ORCID

Affiliation:

1. Purdue University, West Lafayette, USA

Abstract

Syntax-guided synthesis has been a prevalent theme in various computer-aided programming systems. However, the domain of bit-vector synthesis poses several unique challenges that have not yet been sufficiently addressed and resolved. In this paper, we propose a novel synthesis approach that incorporates a distinct enumeration strategy based on various factors. Technically, this approach weighs in subexpression recurrence by term-graph-based enumeration, avoids useless candidates by example-guided filtration, prioritizes valuable components identified by large language models. This approach also incorporates a bottom-up deduction step to enhance the enumeration algorithm by considering subproblems that contribute to the deductive resolution. We implement all the enhanced enumeration techniques in our SyGuS solver DryadSynth, which outperforms state-of-the-art solvers in terms of the number of solved problems, execution time, and solution size. Notably, DryadSynth successfully solved 31 synthesis problems for the first time, including 5 renowned Hacker's Delight problems.

Funder

NSF

Publisher

Association for Computing Machinery (ACM)

Reference42 articles.

1. Aws Albarghouthi, Sumit Gulwani, and Zachary Kincaid. 2013. Recursive Program Synthesis. In Computer Aided Verification, Natasha Sharygina and Helmut Veith (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg. 934–950. isbn:978-3-642-39799-8

2. Rajeev Alur, Pavol Černý, and Arjun Radhakrishna. 2015. Synthesis Through Unification. In Computer Aided Verification, Daniel Kroening and Corina S. Păsăreanu (Eds.). Springer International Publishing, Cham. 163–179. isbn:978-3-319-21668-3

3. Rajeev Alur, Arjun Radhakrishna, and Abhishek Udupa. 2017. Scaling Enumerative Program Synthesis via Divide and Conquer. In Tools and Algorithms for the Construction and Analysis of Systems, Axel Legay and Tiziana Margaria (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg. 319–336. isbn:978-3-662-54577-5

4. Search-based program synthesis

5. Matej Balog, Alexander L. Gaunt, Marc Brockschmidt, Sebastian Nowozin, and Daniel Tarlow. 2017. DeepCoder: Learning to Write Programs. In International Conference on Learning Representations. https://openreview.net/forum?id=ByldLrqlx

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Syntax-Guided Automated Program Repair for Hyperproperties;Lecture Notes in Computer Science;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3