Affiliation:
1. University of Southern California
2. Carnegie Mellon University
3. Indian Institute of Technology Kanpur
Abstract
Reducing energy consumption in multiprocessor systems-on-chip (MPSoCs) where communication happens via the network-on-chip (NoC) approach calls for multiple voltage/frequency island (VFI)-based designs. In turn, such multi-VFI architectures need efficient, robust, and accurate runtime control mechanisms that can exploit the workload characteristics in order to save power. Despite being tractable, the linear control models for power management cannot capture some important workload characteristics (e.g., fractality, nonstationarity) observed in heterogeneous NoCs; if ignored, such characteristics lead to inefficient communication and resources allocation, as well as high power dissipation in MPSoCs. To mitigate such limitations, we propose a new paradigm shift from power optimization based on linear models to control approaches based on fractal-state equations. As such, our approach is the first to propose a controller for fractal workloads with precise constraints on state and control variables and specific time bounds. Our results show that significant power savings can be achieved at runtime while running a variety of benchmark applications.
Funder
Semiconductor Research Corporation
Division of Computer and Network Systems
Publisher
Association for Computing Machinery (ACM)
Subject
Electrical and Electronic Engineering,Computer Graphics and Computer-Aided Design,Computer Science Applications
Cited by
30 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献