TransRisk

Author:

Xie Xiaoyang1,Hong Zhiqing1,Qin Zhou1,Fang Zhihan1,Tian Yuan2,Zhang Desheng1

Affiliation:

1. Rutgers University, New Brunswick, New Jersey, USA

2. University of Virginia, Charlottesville, Virginia, USA

Abstract

Human mobility data may lead to privacy concerns because a resident can be re-identified from these data by malicious attacks even with anonymized user IDs. For an urban service collecting mobility data, an efficient privacy risk assessment is essential for the privacy protection of its users. The existing methods enable efficient privacy risk assessments for service operators to fast adjust the quality of sensing data to lower privacy risk by using prediction models. However, for these prediction models, most of them require massive training data, which has to be collected and stored first. Such a large-scale long-term training data collection contradicts the purpose of privacy risk prediction for new urban services, which is to ensure that the quality of high-risk human mobility data is adjusted to low privacy risk within a short time. To solve this problem, we present a privacy risk prediction model based on transfer learning, i.e., TransRisk, to predict the privacy risk for a new target urban service through (1) small-scale short-term data of its own, and (2) the knowledge learned from data from other existing urban services. We envision the application of TransRisk on the traffic camera surveillance system and evaluate it with real-world mobility datasets already collected in a Chinese city, Shenzhen, including four source datasets, i.e., (i) one call detail record dataset (CDR) with 1.2 million users; (ii) one cellphone connection data dataset (CONN) with 1.2 million users; (iii) a vehicular GPS dataset (Vehicles) with 10 thousand vehicles; (iv) an electronic toll collection transaction dataset (ETC) with 156 thousand users, and a target dataset, i.e., a camera dataset (Camera) with 248 cameras. The results show that our model outperforms the state-of-the-art methods in terms of RMSE and MAE. Our work also provides valuable insights and implications on mobility data privacy risk assessment for both current and future large-scale services.

Funder

Facebook

NSF

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Hardware and Architecture,Human-Computer Interaction

Reference36 articles.

1. An introduction to kernel and nearest-neighbor nonparametric regression;Altman Naomi S;The American Statistician,1992

2. Human mobility: Models and applications

3. Attention Augmented Convolutional Networks

4. Predicting poverty and wealth from mobile phone metadata

5. Antoine Boutet , Sonia Ben Mokhtar, and Vincent Primault. Uniqueness assessment of human mobility on multi-sensor datasets . 2016 . Antoine Boutet, Sonia Ben Mokhtar, and Vincent Primault. Uniqueness assessment of human mobility on multi-sensor datasets. 2016.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3