Image and Video Coding Techniques for Ultra-low Latency

Author:

Žádník Jakub1ORCID,Mäkitalo Markku1ORCID,Vanne Jarno1ORCID,Jääskeläinen Pekka1ORCID

Affiliation:

1. Tampere University, Tampere, Finland

Abstract

The next generation of wireless networks fosters the adoption of latency-critical applications such as XR, connected industry, or autonomous driving. This survey gathers implementation aspects of different image and video coding schemes and discusses their tradeoffs. Standardized video coding technologies such as HEVC or VVC provide a high compression ratio, but their enormous complexity sets the scene for alternative approaches like still image, mezzanine, or texture compression in scenarios with tight resource or latency constraints. Regardless of the coding scheme, we found inter-device memory transfers and the lack of sub-frame coding as limitations of current full-system and software-programmable implementations.

Funder

Tampere University Graduate School

ECSEL Joint Undertaking

European Union’s Horizon 2020 research and innovation programme

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science,Theoretical Computer Science

Reference166 articles.

1. 3rd Generation Partnership Project (3GPP). 2018. Study on Communication for Automation in Vertical Domains (CAV). Technical Report 22.804.

2. R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and S. Süsstrunk. 2010. SLIC Superpixels. Technical Report.

3. Prospects for live higher resolution video streaming to mobile devices: achievable quality across wireless links

4. The FitOptiVis ECSEL project

5. Compressing dynamically generated textures on the GPU

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Performance of Linear Coding and Transmission in Low-Latency Computer Vision Offloading;2024 IEEE Wireless Communications and Networking Conference (WCNC);2024-04-21

2. Synergized QoE-Centric Streaming for Telerobotics;2024 International Conference on Computing, Networking and Communications (ICNC);2024-02-19

3. A quality of experience model for live video in first-person-view drone control in cellular networks;Computer Networks;2023-12

4. QuickETC2-HQ: Improved ETC2 encoding techniques for real-time, high-quality texture compression;Computers & Graphics;2023-11

5. Enhancing Laryngeal Spinocellular Carcinoma Image Security with DCT;Indian Journal of Otolaryngology and Head & Neck Surgery;2023-10-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3