ARM-CO-UP: ARM COoperative Utilization of Processors

Author:

Aghapour Ehsan1ORCID,Sapra Dolly1ORCID,Pimentel Andy1ORCID,Pathania Anuj1ORCID

Affiliation:

1. University of Amsterdam, Amsterdam, Netherlands

Abstract

HMPSoCs combine different processors on a single chip. They enable powerful embedded devices, which increasingly perform ML inference tasks at the edge. State-of-the-art HMPSoCs can perform on-chip embedded inference using different processors, such as CPUs, GPUs, and NPUs. HMPSoCs can potentially overcome the limitation of low single-processor CNN inference performance and efficiency by cooperative use of multiple processors. However, standard inference frameworks for edge devices typically utilize only a single processor. We present the ARM-CO-UP framework built on the ARM-CL library. The ARM-CO-UP framework supports two modes of operation – Pipeline and Switch. It optimizes inference throughput using pipelined execution of network partitions for consecutive input frames in the Pipeline mode. It improves inference latency through layer-switched inference for a single input frame in the Switch mode. Furthermore, it supports layer-wise CPU/GPU DVFS in both modes for improving power efficiency and energy consumption. ARM-CO-UP is a comprehensive framework for multi-processor CNN inference that automates CNN partitioning and mapping, pipeline synchronization, processor type switching, layer-wise DVFS , and closed-source NPU integration.

Publisher

Association for Computing Machinery (ACM)

Reference30 articles.

1. CPU-GPU Layer-Switched Low Latency CNN Inference

2. PELSI: Power-Efficient Layer-Switched Inference

3. PipeBERT: High-throughput BERT Inference for ARM Big.LITTLE Multi-core Processors

4. Review of Low Frame Rate Effects on Human Performance

5. Tianqi Chen Thierry Moreau Ziheng Jiang Lianmin Zheng Eddie Yan Haichen Shen Meghan Cowan et al. 2018. TVM: An automated End-to-End optimizing compiler for deep learning. In 13th USENIX Symposium on Operating Systems Design and Implementation (OSDI’18) 578–594.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. PiQi: Partially Quantized DNN Inference on HMPSoCs;Proceedings of the 29th ACM/IEEE International Symposium on Low Power Electronics and Design;2024-08-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3