Author:
Alur Rajeev,Etessami Kousha,La Torre Salvatore,Peled Doron
Abstract
We extend the standard model checking paradigm of linear temporal logic, LTL, to a “model measuring” paradigm where one can obtain more quantitative information beyond a “Yes/No” answer. For this purpose, we define a
parametric temporal logic
, PLTL, which allows statements such as “a request
p
is followed in at most
x
steps by a response
q
,” where
x
is a free variable. We show how one can, given a formula ***(
x
1
...,x
k
) of PLTL and a system model
K
satisfies the property ***, but if so find valuations which satisfy various optimality criteria. In particular, we present algorithms for finding valuations which minimize (or maximize) the maximum (or minimum) of all parameters. Theses algorithms exhibit the same PSPACE complexity as LTL model checking. We show that our choice of syntax for PLTL lies at the threshold of decidability for parametric temporal logics, in that several natural extensions have undecidable “model measuring” problems.
Publisher
Association for Computing Machinery (ACM)
Subject
Computational Mathematics,Logic,General Computer Science,Theoretical Computer Science
Cited by
50 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献