Selective memoization

Author:

Acar Umut A.1,Blelloch Guy E.1,Harper Robert1

Affiliation:

1. Carnegie Mellon University, Pittsburgh, PA

Abstract

We present a framework for applying memoization selectively. The framework provides programmer control over equality, space usage, and identification of precise dependences so that memoization can be applied according to the needs of an application. Two key properties of the framework are that it is efficient and yields programs whose performance can be analyzed using standard techniques.We describe the framework in the context of a functional language and an implementation as an SML library. The language is based on a modal type system and allows the programmer to express programs that reveal their true data dependences when executed. The SML implementation cannot support this modal type system statically, but instead employs run-time checks to ensure correct usage of primitives.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design,Software

Reference34 articles.

1. Analysis and caching of dependencies

2. Adaptive functional programming

3. R. Bellman. Dynamic Programming. Princeton University Press 1957.]] R. Bellman. Dynamic Programming. Princeton University Press 1957.]]

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. ASAC: A Benchmark for Algorithm Synthesis;Companion Proceedings of the 32nd ACM International Conference on the Foundations of Software Engineering;2024-07-10

2. Synthesizing Efficient Memoization Algorithms;Proceedings of the ACM on Programming Languages;2023-10-16

3. Optimizing the performance of a server-based classification for a large business document flow;«System analysis and applied information science»;2023-02-24

4. EVMTracer: Dynamic Analysis of the Parallelization and Redundancy Potential in the Ethereum Virtual Machine;IEEE Access;2023

5. Work-in-Progress: Decision Support System for the Process of Student Academic Registration;Lecture Notes in Networks and Systems;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3