An Urban Mobility Model with Buildings Involved

Author:

Zheng Zimu1,Wang Feng2,Wang Dan3,Zhang Liang4

Affiliation:

1. The Hong Kong Polytechnic University; Huawei Technologies Co., Ltd.

2. The University of Mississippi, MS, USA

3. The Hong Kong Polytechnic University, Hung Hom, KL, Hong Kong

4. JD.com

Abstract

Urban Mobility Models (UMMs) are fundamental tools for estimating the population in urban sites and their spatial movements over time. Most existing UMMs were developed primarily in 2D. However, we argue that people’s movements and living patterns involve 3D space, i.e., buildings, which can heavily affect the accuracy of UMMs. In this article, we for the first time conduct a comprehensive study on the impacts of buildings on human movements and the effect on UMMs. We innovatively capture the impacts by developing a Semi-absorbing Urban Mobility model (SUM) and theoretically prove its properties on its difference from that of previous UMMs. We also show that calibrating our original SUM may need a large number of parameters. As such, we develop two SUM extensions with a substantially reduced number of parameters, making calibration practical. Our evaluation also demonstrates that, as a basis for supporting mobile applications in an intracity and hourly scale, the SUM is far superior to previous UMMs. In a case study, we also show that the performance of the resource allocation scheme in a cellular network substantially improves by using SUM, with a reduction in the packet loss probability of 3.19 times.

Funder

the Hong Kong Polytechnic University

NSF I/UCRC

RGC

ITF

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Refining Ground Classification for the Distribution of LTE Users Using Supervised Learning Techniques;GLOBECOM 2023 - 2023 IEEE Global Communications Conference;2023-12-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3