Dynamic User Modeling in Social Media Systems

Author:

Yin Hongzhi1,Cui Bin2,Chen Ling3,Hu Zhiting4,Zhou Xiaofang1

Affiliation:

1. The University of Queensland, Australia

2. Peking University, Beijing, China

3. University of Technology, Sydney

4. Carnegie Mellon University

Abstract

Social media provides valuable resources to analyze user behaviors and capture user preferences. This article focuses on analyzing user behaviors in social media systems and designing a latent class statistical mixture model, named temporal context-aware mixture model (TCAM), to account for the intentions and preferences behind user behaviors. Based on the observation that the behaviors of a user in social media systems are generally influenced by intrinsic interest as well as the temporal context (e.g., the public's attention at that time), TCAM simultaneously models the topics related to users' intrinsic interests and the topics related to temporal context and then combines the influences from the two factors to model user behaviors in a unified way. Considering that users' interests are not always stable and may change over time, we extend TCAM to a dynamic temporal context-aware mixture model (DTCAM) to capture users' changing interests. To alleviate the problem of data sparsity, we exploit the social and temporal correlation information by integrating a social-temporal regularization framework into the DTCAM model. To further improve the performance of our proposed models (TCAM and DTCAM), an item-weighting scheme is proposed to enable them to favor items that better represent topics related to user interests and topics related to temporal context, respectively. Based on our proposed models, we design a temporal context-aware recommender system (TCARS). To speed up the process of producing the top- k recommendations from large-scale social media data, we develop an efficient query-processing technique to support TCARS. Extensive experiments have been conducted to evaluate the performance of our models on four real-world datasets crawled from different social media sites. The experimental results demonstrate the superiority of our models, compared with the state-of-the-art competitor methods, by modeling user behaviors more precisely and making more effective and efficient recommendations.

Funder

Australian Research Council

National Natural Science Foundation of China

ARC Discovery Project

973 program

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Science Applications,General Business, Management and Accounting,Information Systems

Cited by 136 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3