Affiliation:
1. University of New South Wales, Sydney, NSW, Australia
2. RMIT University, Melbourne, VIC, Australia
3. Tsinghua University, Beijing, China
4. Michigan State University, East Lansing, MI, USA
Abstract
Biometric authentication involves various technologies to identify individuals by exploiting their unique, measurable physiological and behavioral characteristics. However, traditional biometric authentication systems (e.g., face recognition, iris, retina, voice, and fingerprint) are at increasing risks of being tricked by biometric tools such as anti-surveillance masks, contact lenses, vocoder, or fingerprint films. In this article, we design a multimodal biometric authentication system named DeepKey, which uses both Electroencephalography (EEG) and gait signals to better protect against such risk. DeepKey consists of two key components: an Invalid ID Filter Model to block unauthorized subjects, and an identification model based on attention-based Recurrent Neural Network (RNN) to identify a subject’s EEG IDs and gait IDs in parallel. The subject can only be granted access while all the components produce consistent affirmations to match the user’s proclaimed identity. We implement DeepKey with a live deployment in our university and conduct extensive empirical experiments to study its technical feasibility in practice. DeepKey achieves the False Acceptance Rate (FAR) and the False Rejection Rate (FRR) of 0 and 1.0%, respectively. The preliminary results demonstrate that DeepKey is feasible, shows consistent superior performance compared to a set of methods, and has the potential to be applied to the authentication deployment in real-world settings.
Publisher
Association for Computing Machinery (ACM)
Subject
Artificial Intelligence,Theoretical Computer Science
Cited by
35 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献