The ExoVM system for automatic VM and application reduction

Author:

Titzer Ben L.1,Auerbach Joshua2,Bacon David F.2,Palsberg Jens1

Affiliation:

1. UCLA Compilers Group, Los Angeles, CA

2. IBM T.J. Watson Research Center, Hawthorne, NY

Abstract

Embedded systems pose unique challenges to Java application developers and virtual machine designers. Chief among these challenges is the memory footprint of both the virtual machine and the applications that run within it. With the rapidly increasing set of features provided by the Java language, virtual machine designers are often forced to build custom implementations that make various tradeoffs between the footprint of the virtual machine and the subset of the Java language and class libraries that are supported. In this paper, we present the ExoVM, a system in which an application is initialized in a fully featured virtual machine, and then the code, data, and virtual machine features necessary to execute it are packaged into a binary image. Key to this process is feature analysis , a technique for computing the reachable code and data of a Java program and its implementation inside the VM simultaneously. The ExoVM reduces the need to develop customized embedded virtual machines by reusing a single VM infrastructure and automatically eliding the implementation of unused Java features on a per-program basis. We present a constraint-based instantiation of the analysis technique, an implementation in IBM's J9 Java VM, experiments evaluating our technique for the EEMBC benchmark suite, and some discussion of the individual costs of some of Java's features. Our evaluation shows that our system can reduce the non-heap memory allocation of the virtual machine by as much as 75%. We discuss VM and language design decisions that our work shows are important in targeting embedded systems, supporting the long-term goal of a common VM infrastructure spanning from motes to large servers.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design,Software

Reference19 articles.

1. Data size optimizations for java programs

2. Fast static analysis of C++ virtual function calls

3. Heap compression for memory-constrained Java environments

4. Connected Limited Device Configuration (CLDC). http://java.sun.com/j2me Connected Limited Device Configuration (CLDC). http://java.sun.com/j2me

5. Romization: Early Deployment and Customization of Java Systems for Constrained Devices

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3