Q2P

Author:

Wu Wensheng1,Meng Weiyi2,Su Weifeng3,Zhou Guangyou4,Chiang Yao-Yi1

Affiliation:

1. University of Southern California, Los Angeles, CA

2. State University of New York at Binghamton, Binghamton, NY

3. BNU-HKBU United International College, China, ZhuHai, China

4. Central China Normal University, China, WuHan, China

Abstract

We present Q2P, a system that discovers query templates from search engines via their query autocompletion services. Q2P is distinct from the existing works in that it does not rely on query logs of search engines that are typically not readily available. Q2P is also unique in that it uses a trie to economically store queries sampled from a search engine and employs a beam-search strategy that focuses the expansion of the trie on its most promising nodes. Furthermore, Q2P leverages the trie-based storage of query sample to discover query templates using only two passes over the trie. Q2P is a key part of our ongoing project Deep2Q on a template-driven data integration on the Deep Web, where the templates learned by Q2P are used to guide the integration process in Deep2Q. Experimental results on four major search engines indicate that (1) Q2P sends only a moderate number of queries (ranging from 597 to 1,135) to the engines, while obtaining a significant number of completions per query (ranging from 4.2 to 8.5 on the average); (2) a significant number of templates (ranging from 8 to 32 when the minimum support for frequent templates is set to 1%) may be discovered from the samples.

Funder

Guangdong Natural Science Foundation

BNU-HKBU United International College internal grant, and the National Natural Science Foundation of China

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications

Reference41 articles.

1. Towards rich query interpretation

2. Amazon. 2014. Amazon Autocompletion API. Retrieved from http://completion.amazon.com/search/complete?method=completion&search-alias==aps&client==amazon-search-ui&mkt==1&x==updateISSCompletion& sc==1&noCacheIE==1294493634389&q=={query}. Amazon. 2014. Amazon Autocompletion API. Retrieved from http://completion.amazon.com/search/complete?method=completion&search-alias==aps&client==amazon-search-ui&mkt==1&x==updateISSCompletion& sc==1&noCacheIE==1294493634389&q=={query}.

3. Mining search engine query logs via suggestion sampling

4. Bing. 2014. Bing Autocompletion API. Retrieved from http://api.search.live.com/osjson.aspx?query={query}. Bing. 2014. Bing Autocompletion API. Retrieved from http://api.search.live.com/osjson.aspx?query={query}.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3