Affiliation:
1. Nanyang Technological University, Nanyang Avenue, Singapore
2. Michigan State University
Abstract
Appliance-level power usage monitoring may help conserve electricity in homes. Several existing systems achieve this goal by exploiting appliances’ power usage signatures identified in labor-intensive in situ training processes. Recent work shows that autonomous power usage monitoring can be achieved by supplementing a smart meter with distributed sensors that detect the working states of appliances. However, sensors must be carefully installed for each appliance, resulting in a high installation cost. This article presents
Supero
—the first ad hoc sensor system that can monitor appliance power usage without supervised training. By exploiting multisensor fusion and unsupervised machine learning algorithms, Supero can classify the appliance events of interest and autonomously associate measured power usage with the respective appliances. Our extensive evaluation in five real homes shows that Supero can estimate the energy consumption with errors less than 7.5%. Moreover, nonprofessional users can quickly deploy Supero with considerable flexibility.
Funder
Nanyang Technological University
U.S. National Science Foundation
Publisher
Association for Computing Machinery (ACM)
Subject
Computer Networks and Communications
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献