Optimal Location Queries in Road Networks

Author:

Chen Zitong1,Liu Yubao1,Wong Raymond Chi-Wing2,Xiong Jiamin1,Mai Ganglin1,Long Cheng3

Affiliation:

1. Sun Yat-sen University, China

2. The Hong Kong University of Science and Technology, Hong Kong

3. The Hong Kong University of Science and Technology

Abstract

In this article, we study an optimal location query based on a road network. Specifically, given a road network containing clients and servers, an optimal location query finds a location on the road network such that when a new server is set up at this location, a certain cost function computed based on the clients and servers (including the new server) is optimized. Two types of cost functions, namely, MinMax and MaxSum, have been used for this query. The optimal location query problem with MinMax as the cost function is called the MinMax query, which finds a location for setting up a new server such that the maximum cost of a client being served by his/her closest server is minimized. The optimal location query problem with MaxSum as the cost function is called the MaxSum query, which finds a location for setting up a new server such that the sum of the weights of clients attracted by the new server is maximized. The MinMax query and the MaxSum query correspond to two types of optimal location query with the objectives defined from the clients' perspective and from the new server's perspective, respectively. Unfortunately, the existing solutions for the optimal query problem are not efficient. In this article, we propose an efficient algorithm, namely, MinMax-Alg ( MaxSum-Alg ), for the MinMax (MaxSum) query, which is based on a novel idea of nearest location component . We also discuss two extensions of the optimal location query, namely, the optimal multiple-location query and the optimal location query on a 3D road network. Extensive experiments were conducted, showing that our algorithms are faster than the state of the art by at least an order of magnitude on large real benchmark datasets. For example, in our largest real datasets, the state of the art ran for more than 10 (12) hours while our algorithm ran within 3 (2) minutes only for the MinMax (MaxSum) query, that is, our algorithm ran at least 200 (600) times faster than the state of the art.

Funder

National Natural Science Foundation of China

Science and Technology Planning Project of Guangdong Province, China

Publisher

Association for Computing Machinery (ACM)

Subject

Information Systems

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3