Computing almost shortest paths

Author:

Elkin Michael1

Affiliation:

1. Yale University, New Haven, CT

Abstract

We study the <i>s-sources almost shortest paths</i> (abbreviated <i>s-ASP</i>) problem. Given an unweighted graph <i>G</i> &equals; (<i>V,E</i>), and a subset <i>S</i> &sube; <i>V</i> of <i>s</i> nodes, the goal is to compute almost shortest paths between all the pairs of nodes <i>S</i> &times; <i>V</i>. We devise an algorithm with running time <i>O</i>(&mid;<i>E</i>&mid;<i>n</i><sup>&rho;</sup> &plus; <i>s</i> &middot; <i>n</i><sup>1 &plus; &zeta;)</sup> for this problem that computes the paths <i>P</i><sub><i>u,w</i></sub> for all pairs (<i>u,w</i>) &isin; <i>S</i> &times; <i>V</i> such that the length of <i>P</i><sub><i>u,w</i></sub> is at most (1 &plus; &epsi;) <i>d</i><sub><i>G</i></sub>(<i>u,w</i>) &plus; &beta;(&zeta;,&rho;,&epsi;), and &beta;(&zeta;,&rho;,&epsi;) is constant when &zeta;, &rho;, and &epsi; are arbitrarily small constants. We also devise a distributed protocol for the <i>s</i>-ASP problem that computes the paths <i>P</i><inf><i>u,w</i></inf> as above, and has time and communication complexities of <i>O</i>(<i>s</i> &middot; <i>Diam(G)</i> &plus; <i>n</i><sup>1 &plus; &zeta;/2</sup>) (respectively, <i>O</i>(<i>s</i> &middot; <i>Diam(G)</i> log<sup>3</sup> <i>n</i> &plus; <i>n</i><sup>1 &plus; &zeta;/2</sup> log <i>n</i>)) and <i>O</i>(&mid;<i>E</i>&mid; <i>n</i><sup>&rho;</sup> &plus; <i>s</i> &middot; <i>n</i><sup>1 &plus; &zeta;)</sup> (respectively, <i>O</i>(&mid;<i>E</i>&mid; <i>n</i><sup>&rho;</sup> &plus; <i>s</i> &middot; <i>n</i><sup>1 &plus; &zeta;</sup> &plus; <i>n</i><sup>1 &plus; &rho; &plus; &zeta;(&rho; &minus; &zeta;/2)/2)) in the synchronous (respectively asynchronous) setting. Our sequential algorithm, as well as the distributed protocol, is based on a novel algorithm for constructing (1 &plus; &epsi;, &beta;(&zeta;,&rho;, &epsi;))-spanners of size <i>O</i>(<i>n</i><sup>1 &plus; &zeta;</sup>), developed in this article. This algorithm has running time of <i>O</i>(&mid;<i>E</i>&mid; <i>n</i><sup>&rho;</sup>), which is significantly faster than the previously known algorithm given in Elkin and Peleg [2001], whose running time is <i>&Otilde;</i>(<i>n</i><sup>2 &plus; &rho;</sup>). We also develop the first distributed protocol for constructing (1 &plus; &epsi;,&beta;)-spanners. The communication complexity of this protocol is near optimal.

Publisher

Association for Computing Machinery (ACM)

Subject

Mathematics (miscellaneous)

Reference38 articles.

1. Near-Linear Time Construction of Sparse Neighborhood Covers

2. Awerbuch B. Baratz A. and Peleg D. 1991. Efficient broadcast and light-weight spanners. Unpublished manuscript. Awerbuch B. Baratz A. and Peleg D. 1991. Efficient broadcast and light-weight spanners. Unpublished manuscript.

3. A new distributed algorithm to find breadth first search trees

Cited by 70 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. New Algorithms for All Pairs Approximate Shortest Paths;Proceedings of the 55th Annual ACM Symposium on Theory of Computing;2023-06-02

2. Deterministic Distributed Sparse and Ultra-Sparse Spanners and Connectivity Certificates;Proceedings of the 34th ACM Symposium on Parallelism in Algorithms and Architectures;2022-07-11

3. Light Spanners for High Dimensional Norms via Stochastic Decompositions;Algorithmica;2022-06-28

4. Constant-Round Spanners and Shortest Paths in Congested Clique and MPC;Proceedings of the 2021 ACM Symposium on Principles of Distributed Computing;2021-07-21

5. Distributed Spanner Approximation;SIAM Journal on Computing;2021-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3