Adversarial Item Promotion on Visually-Aware Recommender Systems by Guided Diffusion

Author:

Chen Lijian1ORCID,Yuan Wei1ORCID,Chen Tong1ORCID,Ye Guanhua2ORCID,Hung Nguyen Quoc Viet3ORCID,Yin Hongzhi1ORCID

Affiliation:

1. The University of Queensland, Brisbane, Australia

2. Deep Neural Computing Company Limited, Shenzhen, China

3. Griffith University, Gold Coast, Australia

Abstract

Visually-aware recommender systems have found widespread applications in domains where visual elements significantly contribute to the inference of users’ potential preferences. While the incorporation of visual information holds the promise of enhancing recommendation accuracy and alleviating the cold-start problem, it is essential to point out that the inclusion of item images may introduce substantial security challenges. Some existing works have shown that the item provider can manipulate item exposure rates to its advantage by constructing adversarial images. However, these works cannot reveal the real vulnerability of visually-aware recommender systems because (1) the generated adversarial images are markedly distorted, rendering them easily detected by human observers; and (2) the effectiveness of these attacks is inconsistent and even ineffective in some scenarios or datasets. To shed light on the real vulnerabilities of visually-aware recommender systems when confronted with adversarial images, this article introduces a novel attack method, Item Promotion by Diffusion Generated Image (IPDGI). Specifically, IPDGI employs a guided diffusion model to generate adversarial samples designed to promote the exposure rates of target items (e.g., long-tail items). Taking advantage of accurately modeling benign images’ distribution by diffusion models, the generated adversarial images have high fidelity with original images, ensuring the stealth of our IPDGI. To demonstrate the effectiveness of our proposed methods, we conduct extensive experiments on two commonly used e-commerce recommendation datasets (Amazon Beauty and Amazon Baby) with several typical visually-aware recommender systems. The experimental results show that our attack method significantly improves both the performance of promoting the long-tailed (i.e., unpopular) items and the quality of generated adversarial images.

Funder

Australian Research Council

Discovery Early Career Researcher Award

Discovery Project

Industrial Transformation Training Centre

Publisher

Association for Computing Machinery (ACM)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3