Critique on Natural Noise in Recommender Systems

Author:

Jurdi Wissam Al1,Abdo Jacques Bou2,Demerjian Jacques3,Makhoul Abdallah4

Affiliation:

1. Univ. Bourgogne Franche-Comté, FEMTO-ST Institute and Lebanese University

2. University of Nebraska at Kearney, NE, USA

3. Lebanese University, Fanar, Lebanon

4. Univ. Bourgogne Franche-Comté, FEMTO-ST Institute

Abstract

Recommender systems have been upgraded, tested, and applied in many, often incomparable ways. In attempts to diligently understand user behavior in certain environments, those systems have been frequently utilized in domains like e-commerce, e-learning, and tourism. Their increasing need and popularity have allowed the existence of numerous research paths on major issues like data sparsity, cold start, malicious noise, and natural noise, which immensely limit their performance. It is typical that the quality of the data that fuel those systems should be extremely reliable. Inconsistent user information in datasets can alter the performance of recommenders, albeit running advanced personalizing algorithms. The consequences of this can be costly as such systems are employed in abundant online businesses. Successfully managing these inconsistencies results in more personalized user experiences. In this article, the previous works conducted on natural noise management in recommender datasets are thoroughly analyzed. We adequately explore the ways in which the proposed methods measure improved performances and touch on the different natural noise management techniques and the attributes of the solutions. Additionally, we test the evaluation methods employed to assess the approaches and discuss several key gaps and other improvements the field should realize in the future. Our work considers the likelihood of a modern research branch on natural noise management and recommender assessment.

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3