A unified information-theoretic framework for viewpoint selection and mesh saliency

Author:

Feixas Miquel1,Sbert Mateu1,González Francisco1

Affiliation:

1. University of Girona, Girona, Spain

Abstract

Viewpoint selection is an emerging area in computer graphics with applications in fields such as scene exploration, image-based modeling, and volume visualization. In particular, best view selection algorithms are used to obtain the minimum number of views (or images) in order to understand or model an object or scene better. In this article, we present a unified framework for viewpoint selection and mesh saliency based on the definition of an information channel between a set of viewpoints (input) and the set of polygons of an object (output). The mutual information of this channel is shown to be a powerful tool to deal with viewpoint selection, viewpoint stability, object exploration and viewpoint-based saliency. In addition, viewpoint mutual information is extended using saliency as an importance factor, showing how perceptual criteria can be incorporated to our method. Although we use a sphere of viewpoints around an object, our framework is also valid for any set of viewpoints in a closed scene. A number of experiments demonstrate the robustness of our approach and the good behavior of the proposed measures.

Funder

Spanish Government

Sixth Framework Programme

Publisher

Association for Computing Machinery (ACM)

Subject

Experimental and Cognitive Psychology,General Computer Science,Theoretical Computer Science

Cited by 98 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Viewpoint Selection for 3D-Games with f-Divergences;Entropy;2024-05-29

2. GAIT: Generating Aesthetic Indoor Tours with Deep Reinforcement Learning;2023 IEEE/CVF International Conference on Computer Vision (ICCV);2023-10-01

3. View recommendation for multi-camera demonstration-based training;Multimedia Tools and Applications;2023-08-03

4. Context-Aware 3D Points of Interest Detection via Spatial Attention Mechanism;ACM Transactions on Multimedia Computing, Communications, and Applications;2023-07-12

5. Viewpoint Selection for Texture Reconstruction with Inverse Rendering;Proceedings of the 33rd International Conference on Computer Graphics and Vision;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3