Affiliation:
1. University of Girona, Girona, Spain
Abstract
Viewpoint selection is an emerging area in computer graphics with applications in fields such as scene exploration, image-based modeling, and volume visualization. In particular, best view selection algorithms are used to obtain the minimum number of views (or images) in order to understand or model an object or scene better. In this article, we present a unified framework for viewpoint selection and mesh saliency based on the definition of an information channel between a set of viewpoints (input) and the set of polygons of an object (output). The mutual information of this channel is shown to be a powerful tool to deal with viewpoint selection, viewpoint stability, object exploration and viewpoint-based saliency. In addition, viewpoint mutual information is extended using saliency as an importance factor, showing how perceptual criteria can be incorporated to our method. Although we use a sphere of viewpoints around an object, our framework is also valid for any set of viewpoints in a closed scene. A number of experiments demonstrate the robustness of our approach and the good behavior of the proposed measures.
Funder
Spanish Government
Sixth Framework Programme
Publisher
Association for Computing Machinery (ACM)
Subject
Experimental and Cognitive Psychology,General Computer Science,Theoretical Computer Science
Cited by
98 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献