Turn on, Tune in, Listen up: Maximizing Side-Channel Recovery in Cross-Platform Time-to-Digital Converters

Author:

Drewes Colin1ORCID,Sheaves Tyler2ORCID,Weng Olivia3ORCID,Ryan Keegan3ORCID,Hunter Bill4ORCID,McCarty Christopher4ORCID,Kastner Ryan3ORCID,Richmond Dustin5ORCID

Affiliation:

1. Stanford University, USA

2. University of California, Davis, USA

3. University of California San Diego, USA

4. Georgia Tech Research Institute, USA

5. University of California, Santa Cruz, USA

Abstract

Voltage fluctuation sensors measure minute changes in an FPGA power distribution network, allowing attackers to extract information from concurrently executing computations. Previous voltage fluctuation sensors make assumptions about the co-tenant computation and require the attacker have a priori access or system knowledge to tune the sensor parameters statically. Additionally, prior voltage fluctuation sensors make use of proprietary vendor intellectual property and do not provide guidance on sensor migration to other vendors. We present the open-source design of the Tunable Dual-Polarity Time-to-Digital Converter, which introduces three dynamically tunable parameters that optimize signal measurement, including the transition polarity, sample window, frequency, and phase. We show that a properly tuned sensor improves co-tenant classification accuracy by 2.5 \(\times\) over prior work and increases the ability to identify the co-tenant computation and its microarchitectural implementation. Across 13 varying applications, our techniques yield an 80 \(\%\) classification accuracy that generalizes beyond a single board. Our sensor improves the ability of a correlation power analysis attack to rank correct subkey values by 2 \(\times\) . As an extension to our prior work, we show that the voltage fluctuation sensor is portable to multiple FPGA vendors, and we demonstrate implementations on both Xilinx and Intel FPGA systems.

Publisher

Association for Computing Machinery (ACM)

Reference55 articles.

1. Arvind Arasu, Ken Eguro, Manas Joglekar, Raghav Kaushik, Donald Kossmann, and Ravi Ramamurthy. 2015. Transaction Processing on Confidential Data using Cipherbase. In 2015 IEEE 31st International Conference on Data Engineering. IEEE, 435–446. https://doi.org/10.1109/ICDE.2015.7113304

2. Eric Brier, Christophe Clavier, and Francis Olivier. 2004. Correlation Power Analysis with a Leakage Model. In International Workshop on Cryptographic Hardware and Embedded Systems - CHES 2004, Marc Joye and Jean-Jacques Quisquater (Eds.). Springer, Berlin, Heidelberg, 16–29. https://doi.org/10.1007/978-3-540-28632-5_2

3. High-resolution waveform capture device on a cyclone-v fpga;Charlot Noeloikeau F;IEEE Access,2021

4. Yu-Ting Chen, Jason Cong, Zhenman Fang, Jie Lei, and Peng Wei. 2016. When Spark Meets FPGAs: A Case Study for Next-Generation DNA Sequencing Acceleration. In 2016 IEEE 24th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM). 29–29. https://doi.org/10.1109/FCCM.2016.18

5. Design and Calibration Techniques for a Multichannel FPGA-Based Time-to-Digital Converter in an Object Positioning System

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. LDL-SCA: Linearized Deep Learning Side-Channel Attack Targeting Multi-tenant FPGAs✱;Proceedings of the Great Lakes Symposium on VLSI 2024;2024-06-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3