Parallelising Control Flow in Dynamic-scheduling High-level Synthesis

Author:

Cheng Jianyi1ORCID,Josipović Lana2ORCID,Wickerson John1ORCID,Constantinides George A.1ORCID

Affiliation:

1. Imperial College London, United Kingdom

2. ETH Zürich, Switzerland

Abstract

Recently, there is a trend to use high-level synthesis (HLS) tools to generate dynamically scheduled hardware. The generated hardware is made up of components connected using handshake signals. These handshake signals schedule the components at runtime when inputs become available. Such approaches promise superior performance on “irregular” source programs, such as those whose control flow depends on input data. This is at the cost of additional area. Current dynamic scheduling techniques are well able to exploit parallelism among instructions within each basic block (BB) of the source program, but parallelism between BBs is under-explored, due to the complexity in runtime control flows and memory dependencies. Existing tools allow some of the operations of different BBs to overlap, but to simplify the analysis required at compile time they require the BBs to start in strict program order, thus limiting the achievable parallelism and overall performance. We formulate a general dependency model suitable for comparing the ability of different dynamic scheduling approaches to extract maximal parallelism at runtime. Using this model, we explore a variety of mechanisms for runtime scheduling, incorporating and generalising existing approaches. In particular, we precisely identify the restrictions in existing scheduling implementation and define possible optimisation solutions. We identify two particularly promising examples where the compile-time overhead is small and the area overhead is minimal and yet we are able to significantly speed up execution time: (1) parallelising consecutive independent loops; and (2) parallelising independent inner-loop instances in a nested loop as individual threads. Using benchmark sets from related works, we compare our proposed toolflow against a state-of-the-art dynamic-scheduling HLS tool called Dynamatic. Our results show that, on average, our toolflow yields a 4× speedup from (1) and a 2.9× speedup from (2), with a negligible area overhead. This increases to a 14.3× average speedup when combining (1) and (2).

Funder

EPSRC

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Reference55 articles.

1. Amazon. 2022. Amazon EC2 F1 Instances. Retrieved from https://aws.amazon.com/ec2/instance-types/f1/.

2. B. Barney. 2021. POSIX Threads Programming. Retrieved from https://computing.llnl.gov/tutorials/pthreads.

3. A practical automatic polyhedral parallelizer and locality optimizer

4. Daniel Cabrera, Xavier Martorell, Georgi Gaydadjiev, Eduard Ayguade, and Daniel Jiménez-González. 2009. OpenMP extensions for FPGA accelerators. In International Symposium on Systems, Architectures, Modeling, and Simulation. IEEE, 17–24.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3