Decreasing the Miss Rate and Eliminating the Performance Penalty of a Data Filter Cache

Author:

Stokes Michael1,Whalley David1,Onder Soner2

Affiliation:

1. Florida State University, Tallahassee, Florida

2. Michigan Technological University, Houghton, Michigan

Abstract

While data filter caches (DFCs) have been shown to be effective at reducing data access energy, they have not been adopted in processors due to the associated performance penalty caused by high DFC miss rates. In this article, we present a design that both decreases the DFC miss rate and completely eliminates the DFC performance penalty even for a level-one data cache (L1 DC) with a single cycle access time. First, we show that a DFC that lazily fills each word in a DFC line from an L1 DC only when the word is referenced is more energy-efficient than eagerly filling the entire DFC line. For a 512B DFC, we are able to eliminate loads of words into the DFC that are never referenced before being evicted, which occurred for about 75% of the words in 32B lines. Second, we demonstrate that a lazily word filled DFC line can effectively share and pack data words from multiple L1 DC lines to lower the DFC miss rate. For a 512B DFC, we completely avoid accessing the L1 DC for loads about 23% of the time and avoid a fully associative L1 DC access for loads 50% of the time, where the DFC only requires about 2.5% of the size of the L1 DC. Finally, we present a method that completely eliminates the DFC performance penalty by speculatively performing DFC tag checks early and only accessing DFC data when a hit is guaranteed. For a 512B DFC, we improve data access energy usage for the DTLB and L1 DC by 33% with no performance degradation.

Funder

US National Science Foundation

Publisher

Association for Computing Machinery (ACM)

Subject

Hardware and Architecture,Information Systems,Software

Reference27 articles.

1. Designing a practical data filter cache to improve both energy efficiency and performance;Bardizbanyan A.;ACM Trans. Archit. Compiler Optim.,2013

2. Efficient Embedded Computing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3