Receiver-driven layered multicast

Author:

McCanne Steven1,Jacobson Van2,Vetterli Martin3

Affiliation:

1. University of California, Berkeley and Lawrence Berkeley National Laboratory

2. Network Research Group, Lawrence Berkeley National Laboratory

3. University of California, Berkeley

Abstract

State of the art, real-time, rate-adaptive, multimedia applications adjust their transmission rate to match the available network capacity. Unfortunately, this source-based rate-adaptation performs poorly in a heterogeneous multicast environment because there is no single target rate --- the conflicting bandwidth requirements of all receivers cannot be simultaneously satisfied with one transmission rate. If the burden of rate-adaption is moved from the source to the receivers, heterogeneity is accommodated. One approach to receiver-driven adaptation is to combine a layered source coding algorithm with a layered transmission system. By selectively forwarding subsets of layers at constrained network links, each user receives the best quality signal that the network can deliver. We and others have proposed that selective-forwarding be carried out using multiple IP-Multicast groups where each receiver specifies its level of subscription by joining a subset of the groups. In this paper, we extend the multiple group framework with a rate-adaptation protocol called Receiver-driven Layered Multicast, or RLM. Under RLM, multicast receivers adapt to both the static heterogeneity of link bandwidths as well as dynamic variations in network capacity (i.e., congestion). We describe the RLM protocol and evaluate its performance with a preliminary simulation study that characterizes user-perceived quality by assessing loss rates over multiple time scales. For the configurations we simulated, RLM results in good throughput with transient short-term loss rates on the order of a few percent and long-term loss rates on the order of one percent. Finally, we discuss our implementation of a software-based Internet video codec and its integration with RLM.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Software

Cited by 113 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Elasticity detection;Proceedings of the ACM SIGCOMM 2022 Conference;2022-08-22

2. Optimizing QoE and Latency of Live Video Streaming Using Edge Computing and In-Network Intelligence;Proceedings of the 12th ACM Multimedia Systems Conference;2021-06-24

3. OSCAR: On Optimizing Resource Utilization in Live Video Streaming;IEEE Transactions on Network and Service Management;2021-03

4. ICMA: An Efficient Integrated Congestion Control Approach;Recent Patents on Engineering;2021-01-19

5. Set Partitioning in Hierarchical Trees for Point Cloud Attribute Compression;IEEE Signal Processing Letters;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3