A Comparative Study of Recent Wireless Sensor Network Simulators

Author:

Minakov Ivan1,Passerone Roberto1,Rizzardi Alessandra2,Sicari Sabrina2

Affiliation:

1. University of Trento, Trento, Italy

2. Università degli Studi dell'Insubria, Varese, Italy

Abstract

Over recent years, the continuous interest in wireless sensor networks (WSNs) has led to the appearance of new modeling methods and simulation environments for WSN applications. A broad variety of different simulation tools have been designed to explore and validate WSN systems before actual implementation and real-world deployment. These tools address different design aspects and offer various simulation abstractions to represent and model real-world behavior. In this article, we present a comprehensive comparative study of mainstream open-source simulation tools for WSNs. Two benchmark applications are designed to evaluate the frameworks with respect to the simulation runtime performance, network throughput, communication medium modeling, packet reception rate, network latency, and power consumption estimation accuracy. Such metrics are also evaluated against measurements on physical prototypes. Our experiments show that the tools produce equivalent results from a functional point of view and capacity to model communication phenomena, while the ability to model details of the execution platform significantly impacts the runtime simulation performance and the power estimation accuracy. The benchmark applications are also made available in the public domain for further studies.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications

Reference64 articles.

1. P. Baldwin S. Kohli A. L. Edward X. Liu and Y. Zhao. 2005. VisualSense: Visual Modeling for Wireless and Sensor Network Systems. Technical Memorandum UCB/ERL M05/25. University of California Berkeley CA. P. Baldwin S. Kohli A. L. Edward X. Liu and Y. Zhao. 2005. VisualSense: Visual Modeling for Wireless and Sensor Network Systems. Technical Memorandum UCB/ERL M05/25. University of California Berkeley CA.

2. Platform based design for wireless sensor networks

3. Castalia

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3