Keyboard acoustic emanations revisited

Author:

Zhuang Li1,Zhou Feng1,Tygar J. D.1

Affiliation:

1. University of California, Berkeley

Abstract

We examine the problem of keyboard acoustic emanations. We present a novel attack taking as input a 10-minute sound recording of a user typing English text using a keyboard and recovering up to 96% of typed characters. There is no need for training recordings labeled with the corresponding clear text. A recognizer bootstrapped from a 10-minute sound recording can even recognize random text such as passwords: In our experiments, 90% of 5-character random passwords using only letters can be generated in fewer than 20 attempts by an adversary; 80% of 10-character passwords can be generated in fewer than 75 attempts by an adversary. In the attack, we use the statistical constraints of the underlying content, English language, to reconstruct text from sound recordings without knowing the corresponding clear text. The attack incorporates a combination of standard machine learning and speech recognition techniques, including cepstrum features, Hidden Markov Models, linear classification, and feedback-based incremental learning.

Funder

Division of Computer and Network Systems

Division of Information and Intelligent Systems

National Science Foundation

Publisher

Association for Computing Machinery (ACM)

Subject

Safety, Risk, Reliability and Quality,General Computer Science

Reference18 articles.

1. Atkinson K. 2005a. GNU Aspell. http://aspell.sourceforge.net. Atkinson K. 2005a. GNU Aspell. http://aspell.sourceforge.net.

2. Atkinson K. 2005b. Spell checker oriented word lists. http://wordlist.sourceforge.net. Atkinson K. 2005b. Spell checker oriented word lists. http://wordlist.sourceforge.net.

3. Bar-El H. 2003. Introduction to side channel attacks. http://www.hbarel.com/Misc/side_channel_attacks.html. Bar-El H. 2003. Introduction to side channel attacks. http://www.hbarel.com/Misc/side_channel_attacks.html.

4. Bilmes J. A. 1997. A gentle tutorial of the EM algorithm and its application to parameter estimation for Gaussian mixture and Hidden Markov Models. Tech. rep. ICSI-TR-97-021 International Computer Science Institute Berkeley CA. ftp://ftp.icsi.berkeley.edu/pub/techreports/1997/tr-97-021.pdf. Bilmes J. A. 1997. A gentle tutorial of the EM algorithm and its application to parameter estimation for Gaussian mixture and Hidden Markov Models. Tech. rep. ICSI-TR-97-021 International Computer Science Institute Berkeley CA. ftp://ftp.icsi.berkeley.edu/pub/techreports/1997/tr-97-021.pdf.

Cited by 143 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Extracting Payment Tokens Out of Sounds Produced by Magnetic Field Fluctuations;IEEE Transactions on Mobile Computing;2024-09

2. Enriching an Open-Source Access Management Platform Using Multi-Factor Authentication;2024 IEEE 18th International Symposium on Applied Computational Intelligence and Informatics (SACI);2024-05-23

3. BUSted!!! Microarchitectural Side-Channel Attacks on the MCU Bus Interconnect;2024 IEEE Symposium on Security and Privacy (SP);2024-05-19

4. A New Deep Learning Pipeline for Acoustic Attack on Keyboards;Lecture Notes in Networks and Systems;2024

5. UltraSnoop: Placement-agnostic Keystroke Snooping via Smartphone-based Ultrasonic Sonar;ACM Transactions on Internet of Things;2023-11-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3