A Survey on Trajectory Data Management, Analytics, and Learning

Author:

Wang Sheng1,Bao Zhifeng2,Culpepper J. Shane2,Cong Gao3

Affiliation:

1. New York University, United States

2. RMIT University, Australia

3. Nanyang Technological University, Singapore

Abstract

Recent advances in sensor and mobile devices have enabled an unprecedented increase in the availability and collection of urban trajectory data, thus increasing the demand for more efficient ways to manage and analyze the data being produced. In this survey, we comprehensively review recent research trends in trajectory data management, ranging from trajectory pre-processing, storage, common trajectory analytic tools, such as querying spatial-only and spatial-textual trajectory data, and trajectory clustering. We also explore four closely related analytical tasks commonly used with trajectory data in interactive or real-time processing. Deep trajectory learning is also reviewed for the first time. Finally, we outline the essential qualities that a trajectory data management system should possess to maximize flexibility.

Funder

MOE Tier-2

MOE Tier-1

ARC

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science,Theoretical Computer Science

Reference207 articles.

1. 2013. Movebank. Retrieved from https://www.movebank.org/. 2013. Movebank. Retrieved from https://www.movebank.org/.

2. 2017. How to Track Vehicles with RFID. Retrieved from https://www.asiarfid.com/rfid-journal/how-to-track-vehicles-with-rfid.html. 2017. How to Track Vehicles with RFID. Retrieved from https://www.asiarfid.com/rfid-journal/how-to-track-vehicles-with-rfid.html.

3. 2018. Next Generation Simulation (NGSIM) Vehicle Trajectories and Supporting Data. Retrieved from https://catalog.data.gov/dataset/next-generation-simulation-ngsim-vehicle-trajectories. 2018. Next Generation Simulation (NGSIM) Vehicle Trajectories and Supporting Data. Retrieved from https://catalog.data.gov/dataset/next-generation-simulation-ngsim-vehicle-trajectories.

4. 2019. Data Science for COVID-19 (DS4C). Retrieved from https://www.kaggle.com/kimjihoo/coronavirusdataset. 2019. Data Science for COVID-19 (DS4C). Retrieved from https://www.kaggle.com/kimjihoo/coronavirusdataset.

Cited by 134 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. FINEST: Stabilizing Recommendations by Rank-Preserving Fine-Tuning;ACM Transactions on Knowledge Discovery from Data;2024-09-09

2. Slow feature-based feature fusion methodology for machinery similarity-based prognostics;ISA Transactions;2024-09

3. Time will not tell: Temporal approaches for privacy-preserving trajectory publishing;Computers, Environment and Urban Systems;2024-09

4. Multi-Scale Detection of Anomalous Spatio-Temporal Trajectories in Evolving Trajectory Datasets;Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining;2024-08-24

5. ControlTraj: Controllable Trajectory Generation with Topology-Constrained Diffusion Model;Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining;2024-08-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3