A Framework for Enhancing Social Media Misinformation Detection with Topical-Tactics

Author:

Bagozzi Benjamin E.1ORCID,Goel Rajni2ORCID,Lugo-De-Fabritz Brunilda3ORCID,Knickmeier-Cummings Kelly3ORCID,Balasubramanian Karthik2ORCID

Affiliation:

1. Science & International Relations, University of Delaware

2. Information Systems and Supply Chain Management, Howard University

3. World Languages & Cultures, Howard University

Abstract

Recent years have seen advancements in machine learning methods for the detection of misinformation on social media. Yet, these methods still often ignore or improperly incorporate key information on the topical-tactics used by misinformation agents. To what extent does this affect the (non)detection of misinformation? We investigate how supervised machine learning approaches can be enhanced to better detect misinformation on social media. Our aim in this regard is to enhance the abilities of academics and practitioners to understand, anticipate, and preempt the sources and impacts of misinformation on the web. To do so, this paper leverages a large sample of verified Russian state-based misinformation tweets and non-misinformation tweets from Twitter. It first assesses standard supervised approaches for detecting Twitter-based misinformation both quantitatively (with respect to classification) and qualitatively (with respect to topical-tactics of Russian misinformation). It then presents a novel framework for integrating topical-tactics of misinformation into standard ‘bag of words’-oriented classification approaches in a manner that avoids data leakage and related measurement challenges. We find that doing so substantially improves the out-of-sample detection of Russian state-based misinformation tweets.

Publisher

Association for Computing Machinery (ACM)

Reference48 articles.

1. Social Media and Fake News in the 2016 Election;Allcott Hunt;Journal of Economic Perspectives.,2017

2. Using Radical Environmentalist Texts to Uncover Network Structure and Network Features;Almquist Zack;Sociological Methods & Research,2019

3. Zulfikar Alom., Barbar Carminati and Elena Ferrari. 2018. Detecting Spam Accounts on Twitter. 2018 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM), Barcelona, 2018: 1191-1198.

4. Muhammad Asfand-e-Yar, Qadeer Hashir, Syed Hassan Tanvir, and Wajeeha Khalil. 2023. Classifying Misinformation of User Credibility in Social Media Using Supervised Learning. Computers, Materials, and Continua. 75(2).

5. Joy Nathalie M. Avelino, Edgardo P. Felizmenio Jr., and Prospero C. Naval Jr. 2022. Unraveling COVID-19 Misinformation with Latent Dirichlet Allocation and CatBoost. In: Bădică, C., Treur, J., Benslimane, D., Hnatkowska, B., Krótkiewicz, M. (eds) Advances in Computational Collective Intelligence. ICCCI 2022. Communications in Computer and Information Science, vol 1653.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3